Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase

Abstract

SAMHD1, an analogue of the murine interferon (IFN)-γ-induced gene Mg11 (ref. 1), has recently been identified as a human immunodeficiency virus-1 (HIV-1) restriction factor that blocks early-stage virus replication in dendritic and other myeloid cells2,3 and is the target of the lentiviral protein Vpx, which can relieve HIV-1 restriction4,5,6,7. SAMHD1 is also associated with Aicardi–Goutières syndrome (AGS), an inflammatory encephalopathy characterized by chronic cerebrospinal fluid lymphocytosis and elevated levels of the antiviral cytokine IFN-α8. The pathology associated with AGS resembles congenital viral infection, such as transplacentally acquired HIV. Here we show that human SAMHD1 is a potent dGTP-stimulated triphosphohydrolase that converts deoxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphosphate. The crystal structure of the catalytic core of SAMHD1 reveals that the protein is dimeric and indicates a molecular basis for dGTP stimulation of catalytic activity against dNTPs. We propose that SAMHD1, which is highly expressed in dendritic cells, restricts HIV-1 replication by hydrolysing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examination of SAMHD1 deoxyribonucleoside triphosphate hydrolysis activity.
Figure 2: SAMHD1 is allosterically activated to cleave dATP, dCTP and TTP by dGTP.
Figure 3: Crystal structure of the extended HD domain of human SAMHD1.
Figure 4: Model for SAMHD1 function.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The coordinates and structure factors of SAMHD1c have been deposited in the Protein Data Bank under accession number 3U1N.

References

  1. Li, N., Zhang, W. & Cao, X. Identification of human homologue of mouse IFN-γ induced protein from human dendritic cells. Immunol. Lett. 74, 221–224 (2000)

    Article  CAS  Google Scholar 

  2. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011)

    Article  CAS  Google Scholar 

  3. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011)

    Article  CAS  Google Scholar 

  4. Goujon, C. et al. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4, 2 (2007)

    Article  Google Scholar 

  5. Kaushik, R., Zhu, X., Stranska, R., Wu, Y. & Stevenson, M. A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection. Cell Host Microbe 6, 68–80 (2009)

    Article  CAS  Google Scholar 

  6. Srivastava, S. et al. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog. 4, e1000059 (2008)

    Article  Google Scholar 

  7. Bergamaschi, A. et al. The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J. Virol. 83, 4854–4860 (2009)

    Article  CAS  Google Scholar 

  8. Rice, G. I. et al. Mutations involved in Aicardi–Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nature Genet. 41, 829–832 (2009)

    Article  CAS  Google Scholar 

  9. Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009)

    Article  Google Scholar 

  10. Prehaud, C., Megret, F., Lafage, M. & Lafon, M. Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J. Virol. 79, 12893–12904 (2005)

    Article  CAS  Google Scholar 

  11. Hartman, Z. C. et al. Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo. J. Virol. 81, 1796–1812 (2007)

    Article  CAS  Google Scholar 

  12. Lindahl, T., Barnes, D. E., Yang, Y. G. & Robins, P. Biochemical properties of mammalian TREX1 and its association with DNA replication and inherited inflammatory disease. Biochem. Soc. Trans. 37, 535–538 (2009)

    Article  CAS  Google Scholar 

  13. Rydberg, B. & Game, J. Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts. Proc. Natl Acad. Sci. USA 99, 16654–16659 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Qiu, J., Qian, Y., Frank, P., Wintersberger, U. & Shen, B. Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol. Cell. Biol. 19, 8361–8371 (1999)

    Article  CAS  Google Scholar 

  15. Aravind, L. & Koonin, E. V. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23, 469–472 (1998)

    Article  CAS  Google Scholar 

  16. Kondo, N. et al. Structure of dNTP-inducible dNTP triphosphohydrolase: insight into broad specificity for dNTPs and triphosphohydrolase-type hydrolysis. Acta Crystallogr. D Biol. Crystallogr. 63, 230–239 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Kondo, N., Kuramitsu, S. & Masui, R. Biochemical characterization of TT1383 from Thermus thermophilus identifies a novel dNTP triphosphohydrolase activity stimulated by dATP and dTTP. J. Biochem. 136, 221–231 (2004)

    Article  CAS  Google Scholar 

  18. Seto, D., Bhatnagar, S. K. & Bessman, M. J. The purification and properties of deoxyguanosine triphosphate triphosphohydrolase from Escherichia coli. J. Biol. Chem. 263, 1494–1499 (1988)

    CAS  PubMed  Google Scholar 

  19. Crow, Y. J. et al. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 cause Aicardi–Goutières syndrome at the AGS1 locus. Nature Genet. 38, 917–920 (2006)

    Article  CAS  Google Scholar 

  20. Crow, Y. J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi–Goutières syndrome and mimic congenital viral brain infection. Nature Genet. 38, 910–916 (2006)

    Article  CAS  Google Scholar 

  21. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008)

    Article  CAS  Google Scholar 

  22. Kennedy, E. M. et al. Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages. J. Biol. Chem. 285, 39380–39391 (2010)

    Article  CAS  Google Scholar 

  23. Diamond, T. L. et al. Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J. Biol. Chem. 279, 51545–51553 (2004)

    Article  CAS  Google Scholar 

  24. Jamburuthugoda, V. K. et al. Reduced dNTP binding affinity of 3TC-resistant M184I HIV-1 reverse transcriptase variants responsible for viral infection failure in macrophage. J. Biol. Chem. 283, 9206–9216 (2008)

    Article  CAS  Google Scholar 

  25. Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Brown, P. H. & Schuck, P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys. J. 90, 4651–4661 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Vistica, J. et al. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Anal. Biochem. 326, 234–256 (2004)

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  29. Zwart, P. H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008)

    Article  CAS  Google Scholar 

  30. Wilson, P. M. et al. A novel fluorescence-based assay for the rapid detection and quantification of cellular deoxyribonucleoside triphosphates. Nucleic Acids Res. 10.1093/nar/gkr350 (16 May 2011)

Download references

Acknowledgements

We thank S. Gamblin for comments on the manuscript and we acknowledge the Diamond Light Source for synchrotron access. This work was supported by the UK Medical Research Council, file references U117565647 (I.A.T.) and U117512710 (J.P.S.). Y.J.C. acknowledges the European Union Seventh Framework Programme (FP7/2007-2013) grant agreement number 241779 (NIMBL: http://www.NIMBL.eu/), and the European Leukodystrophy Association. Y.J.C. and M.W. acknowledge the Manchester National Institute for Health Research Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

D.C.G., V.E.-A., J.J.H., H.C. T. G., E.C., P.A.W., G.K., L.F.H., M.W.Y., I.A.T. and M.W. performed experiments. All authors contributed to data analysis, experimental design and manuscript writing.

Corresponding authors

Correspondence to Ian A. Taylor or Michelle Webb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-2 and Supplementary Figures 1-10 with legends. (PDF 2477 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstone, D., Ennis-Adeniran, V., Hedden, J. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011). https://doi.org/10.1038/nature10623

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10623

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing