Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of Drosophila endocycles by E2F and CRL4CDT2

Abstract

Endocycles are variant cell cycles comprised of DNA synthesis (S)- and gap (G)-phases but lacking mitosis1,2. Such cycles facilitate post-mitotic growth in many invertebrate and plant cells, and are so ubiquitous that they may account for up to half the world’s biomass3,4. DNA replication in endocycling Drosophila cells is triggered by cyclin E/cyclin dependent kinase 2 (CYCE/CDK2), but this kinase must be inactivated during each G-phase to allow the assembly of pre-Replication Complexes (preRCs) for the next S-phase5,6. How CYCE/CDK2 is periodically silenced to allow re-replication has not been established. Here, using genetic tests in parallel with computational modelling, we show that the endocycles of Drosophila are driven by a molecular oscillator in which the E2F1 transcription factor promotes CycE expression and S-phase initiation, S-phase then activates the CRL4CDT2 ubiquitin ligase, and this in turn mediates the destruction of E2F1 (ref. 7). We propose that it is the transient loss of E2F1 during S phases that creates the window of low Cdk activity required for preRC formation. In support of this model overexpressed E2F1 accelerated endocycling, whereas a stabilized variant of E2F1 blocked endocycling by deregulating target genes, including CycE, as well as Cdk1 and mitotic cyclins. Moreover, we find that altering cell growth by changing nutrition or target of rapamycin (TOR) signalling impacts E2F1 translation, thereby making endocycle progression growth-dependent. Many of the regulatory interactions essential to this novel cell cycle oscillator are conserved in animals and plants1,2,8, indicating that elements of this mechanism act in most growth-dependent cell cycles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wild-type salivary gland endocycles.
Figure 2: Genetic tests of the endocycle mechanism.
Figure 3: Endocycle arrest by stabilized E2F1.
Figure 4: E2F1 is a growth sensor.

Similar content being viewed by others

References

  1. Edgar, B. A. & Orr-Weaver, T. L. Endoreplication cell cycles: more for less. Cell 105, 297–306 (2001)

    CAS  PubMed  Google Scholar 

  2. Lilly, M. A. & Duronio, R. J. New insights into cell cycle control from the Drosophila endocycle. Oncogene 24, 2765–2775 (2005)

    CAS  PubMed  Google Scholar 

  3. Sugimoto-Shirasu, K. & Roberts, K. “Big it up”: endoreduplication and cell-size control in plants. Curr. Opin. Plant Biol. 6, 544–553 (2003)

    CAS  PubMed  Google Scholar 

  4. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998)

    ADS  CAS  PubMed  Google Scholar 

  5. Follette, P. J., Duronio, R. J. & O'Farrell, P. H. Fluctuations in cyclin E levels are required for multiple rounds of endocycle S phase in Drosophila. Curr. Biol. 8, 235–238 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Weiss, A., Herzig, A., Jacobs, H. & Lehner, C. F. Continuous cyclin E expression inhibits progression through endoreduplication cycles in Drosophila. Curr. Biol. 8, 239–242 (1998)

    CAS  PubMed  Google Scholar 

  7. Shibutani, S. T. et al. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev. Cell 15, 890–900 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Roodbarkelari, F. et al. Cullin 4-ring finger-ligase plays a key role in the control of endoreplication cycles in Arabidopsis trichomes. Proc. Natl Acad. Sci. USA 107, 15275–15280 (2010)

    ADS  CAS  PubMed  Google Scholar 

  9. Diffley, J. F. Regulation of early events in chromosome replication. Curr. Biol. 14, R778–R786 (2004)

    CAS  PubMed  Google Scholar 

  10. Zielke, N., Querings, S., Rottig, C., Lehner, C. & Sprenger, F. The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles. Genes Dev. 22, 1690–1703 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Maqbool, S. B. et al. Dampened activity of E2F1-DP and Myb-MuvB transcription factors in Drosophila endocycling cells. J. Cell Sci. 123, 4095–4106 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Knoblich, J. A. et al. Cyclin E controls S-phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77, 107–120 (1994)

    CAS  PubMed  Google Scholar 

  13. Lilly, M. A. & Spradling, A. C. The Drosophila endocycle is controlled by cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev. 10, 2514–2526 (1996)

    CAS  PubMed  Google Scholar 

  14. Narbonne-Reveau, K. et al. APC/CFzr/Cdh1 promotes cell cycle progression during the Drosophila endocycle. Development 135, 1451–1461 (2008)

    CAS  PubMed  Google Scholar 

  15. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998)

    CAS  PubMed  Google Scholar 

  16. Sigrist, S. J. & Lehner, C. F. Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671–681 (1997)

    CAS  PubMed  Google Scholar 

  17. Shcherbata, H. R., Althauser, C., Findley, S. D. & Ruohola-Baker, H. The mitotic-to-endocycle switch in Drosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions. Development 131, 3169–3181 (2004)

    CAS  PubMed  Google Scholar 

  18. Hammond, M. P. & Laird, C. D. Control of DNA replication and spatial distribution of defined DNA sequences in salivary gland cells of Drosophila melanogaster. Chromosoma 91, 279–286 (1985)

    CAS  PubMed  Google Scholar 

  19. Hong, A. et al. The cyclin-dependent kinase inhibitor Dacapo promotes replication licensing during Drosophila endocycles. EMBO J. 26, 2071–2082 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Duronio, R. J. & O'Farrell, P. H. Developmental control of the G1 to S transition in Drosophila: cyclin E is a limiting downstream target of E2F. Genes Dev. 9, 1456–1468 (1995)

    CAS  PubMed  Google Scholar 

  21. Royzman, I., Whittaker, A. J. & Orr-Weaver, T. L. Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes Dev. 11, 1999–2011 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Duronio, R. J., Bonnette, P. C. & O'Farrell, P. H. Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F-DP transcription factor and cyclin E during the S-phase transition. Mol. Cell. Biol. 18, 141–151 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Asano, M., Nevins, J. R. & Wharton, R. P. Ectopic E2F expression induces S-phase and apoptosis in Drosophila imaginal discs. Genes Dev. 10, 1422–1432 (1996)

    CAS  PubMed  Google Scholar 

  24. Reis, T. & Edgar, B. A. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Cell 117, 253–264 (2004)

    CAS  PubMed  Google Scholar 

  25. Hériché, J. K., Ang, D., Bier, E. & O'Farrell, P. H. Involvement of an SCFSlmb complex in timely elimination of E2F upon initiation of DNA replication in Drosophila. BMC Genet. 4, 9 (2003)

    PubMed  PubMed Central  Google Scholar 

  26. Weng, L., Zhu, C., Xu, J. & Du, W. Critical role of active repression by E2F and Rb proteins in endoreplication during Drosophila development. EMBO J. 22, 3865–3875 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Frolov, M. V. et al. Functional antagonism between E2F family members. Genes Dev. 15, 2146–2160 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Britton, J. S. & Edgar, B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125, 2149–2158 (1998)

    CAS  PubMed  Google Scholar 

  29. Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M. & Edgar, B. A. Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2, 239–249 (2002)

    CAS  PubMed  Google Scholar 

  30. Moberg, K. H., Mukherjee, A., Veraksa, A., Artavanis-Tsakonas, S. & Hariharan, I. K. The Drosophila F box protein archipelago regulates dMyc protein levels in vivo. Curr. Biol. 14, 965–974 (2004)

    CAS  PubMed  Google Scholar 

  31. Lane, M. E. et al. Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell 87, 1225–1235 (1996)

    CAS  PubMed  Google Scholar 

  32. Lane, M. E. et al. A screen for modifiers of cyclin E function in Drosophila melanogaster identifies Cdk2 mutations, revealing the insignificance of putative phosphorylation sites in Cdk2. Genetics 155, 233–244 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Frolov, M. V., Moon, N. S. & Dyson, N. J. dDP is needed for normal cell proliferation. Mol. Cell. Biol. 25, 3027–3039 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Duronio, R. J., O'Farrell, P. H., Xie, J.-E., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 9, 1445–1455 (1995)

    CAS  PubMed  Google Scholar 

  35. Quinn, L. M., Herr, A., McGarry, T. J. & Richardson, H. The Drosophila Geminin homolog: roles for Geminin in limiting DNA replication, in anaphase and in neurogenesis. Genes Dev. 15, 2741–2754 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Speicher, S. A., Thomas, U., Hinz, U. & Knust, E. The Serrate locus of Drosophila and its role in morphogenesis of the wing imaginal discs: control of cell proliferation. Development 120, 535–544 (1994)

    CAS  PubMed  Google Scholar 

  37. Xin, S., Weng, L., Xu, J. & Du, W. The role of RBF in developmentally regulated cell proliferation in the eye disc and in cyclin D/Cdk4 induced cellular growth. Development 129, 1345–1356 (2002)

    CAS  PubMed  Google Scholar 

  38. Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biol. 5, 566–571 (2003)

    CAS  PubMed  Google Scholar 

  39. Grosskortenhaus, R. & Sprenger, F. Rca1 inhibits APC-Cdh1(Fzr) and is required to prevent cyclin degradation in G2. Dev. Cell 2, 29–40 (2002)

    CAS  PubMed  Google Scholar 

  40. Richardson, H. E., O'Keefe, L. V., Reed, S. I. & Saint, R. A. Drosophila G1-specific cyclin E homolog exhibits different modes of expression during embryogenesis. Development 119, 673–690 (1993)

    CAS  PubMed  Google Scholar 

  41. Duronio, R. J. & O'Farrell, P. Developmental control of a G1-S transcriptional program in Drosophila. Development 120, 1503–1515 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dynlacht, B. D., Brook, A., Dembski, M., Yenush, L. & Dyson, N. DNA-binding and trans-activation properties of Drosophila E2F and DP proteins. Proc. Natl Acad. Sci. USA 91, 6359–6363 (1994)

    ADS  CAS  PubMed  Google Scholar 

  43. Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846 (2004)

    CAS  PubMed  Google Scholar 

  44. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989)

    CAS  PubMed  Google Scholar 

  45. Van Gilst, M. R., Hadjivassiliou, H. & Yamamoto, K. R. A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc. Natl Acad. Sci. USA 102, 13496–13501 (2005)

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH GM51186 to B.A.E., a DAAD fellowship to N.Z., NIGMS 5 P50 GM66050 and NSF MCB0090835 to G.v.D. and K.J.K, DFG LE987/5-1 to C.F.L., CIHR MOP-86622 to S.G., and NIH GM57859 to R.J.D. We thank Y. Liu for help with statistics.

Author information

Authors and Affiliations

Authors

Contributions

The E2F1-based oscillator was conceived by B.A.E.; N.Z. developed the framework for licensing control and E2F2-mediated repression of mitotic genes. K.J.K. did most of the computational modeling, which was initiated by G.v.D. Initial experiments were done by V.T., who, with help from B.W. and K.J.K., contributed Figs 1d–f, 2a, b, 4a, b and Supplementary Fig. 13. N.Z. carried out much of the later experimental work with help from M.v.S., and contributed Figs 2b, c, 3c–j, 4c and Supplementary Figs 1, 3, 11, 12 and 14–20. S.T.S and R.J.D. contributed the GFP–E2F1PIP3A transgenics and controls. M.-J.B. contributed Figs 1a–c, 3a, b and Supplementary Fig. 15g, h. S.N. and S.S.G. contributed Fig 4d. C.R. and C.F.L. contributed Supplementary Fig. 2 and the cdk2−/− data in Fig. 2b. B.A.E. directed the project and wrote the manuscript.

Corresponding author

Correspondence to Bruce A. Edgar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains, Supplementary Text including Supplementary Methods and a Supplementary Discussion (see Contents for details), Supplementary Tables 1-2, Supplementary Figures 1-20 with legends and additional references. (PDF 8480 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zielke, N., Kim, K., Tran, V. et al. Control of Drosophila endocycles by E2F and CRL4CDT2. Nature 480, 123–127 (2011). https://doi.org/10.1038/nature10579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10579

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing