Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3

Abstract

The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore1. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A (ref. 2). A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH3 (refs 3, 4). The structural basis of this specification is of particular interest. Yeast Scm3 and human HJURP are conserved non-histone proteins that interact physically with the (CenH3–H4)2 heterotetramer and are required for the deposition of CenH3 at centromeres in vivo5,6,7,8,9,10,11,12,13. Here we have elucidated the structural basis for recognition of budding yeast (Saccharomyces cerevisiae) CenH3 (called Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 in complex with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved amino terminus and a shorter α-helix at the carboxy terminus of Scm3(CBD) wraps around the Cse4–H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3(CBD) induces major conformational changes and sterically occludes DNA-binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of scSCH.
Figure 2: The N-terminal region (181–190) of the α2 helix of Cse4 is the Scm3 recognition motif.
Figure 3: Altered interactions in the CATD region in scSCH.
Figure 4: Scm3 induces large conformational changes in Cse4 and H4 and prevents loop 2 of H4 from binding to DNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Data deposits

The atomic coordinates have been deposited in the Protein Data Bank under accession code 2L5A.

References

  1. Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003)

    Article  CAS  Google Scholar 

  2. Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001)

    Article  CAS  Google Scholar 

  3. Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578–582 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Black, B. E. et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell 25, 309–322 (2007)

    Article  CAS  Google Scholar 

  5. Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M. M. & Wu, C. Nonhistone Scm3 and histones CenH3–H4 assemble the core of centromere-specific nucleosomes. Cell 129, 1153–1164 (2007)

    Article  CAS  Google Scholar 

  6. Camahort, R. et al. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26, 853–865 (2007)

    Article  CAS  Google Scholar 

  7. Stoler, S. et al. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl Acad. Sci. USA 104, 10571–10576 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Camahort, R. et al. Cse4 is part of an octameric nucleosome in budding yeast. Mol. Cell 35, 794–805 (2009)

    Article  CAS  Google Scholar 

  9. Sanchez-Pulido, L., Pidoux, A. L., Pointing, C. P. & Allshire, R. C. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 137, 1173–1174 (2009)

    Article  Google Scholar 

  10. Williams, J. S., Hayashi, T., Yanagida, M. & Russell, P. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol. Cell 33, 287–298 (2009)

    Article  CAS  Google Scholar 

  11. Pidoux, A. L. et al. Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin. Mol. Cell 33, 299–311 (2009)

    Article  CAS  Google Scholar 

  12. Foltz, D. R. et al. Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009)

    Article  CAS  Google Scholar 

  13. Dunleavy, E. M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009)

    Article  CAS  Google Scholar 

  14. Malik, H. S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009)

    Article  CAS  Google Scholar 

  15. Stoler, S., Keith, K. C., Curnick, K. E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995)

    Article  CAS  Google Scholar 

  16. Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M. M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae . Cell 94, 607–613 (1998)

    Article  CAS  Google Scholar 

  17. Cottarel, G., Shero, J. H., Hieter, P. & Hegemann, J. H. A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae . Mol. Cell. Biol. 9, 3342–3349 (1989)

    Article  CAS  Google Scholar 

  18. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980)

    Article  ADS  CAS  Google Scholar 

  19. Black, B. E. & Bassett, E. A. The histone variant CENP-A and centromere specification. Curr. Opin. Cell Biol. 20, 91–100 (2008)

    Article  CAS  Google Scholar 

  20. Furuyama, T. & Henikoff, S. Centromeric nucleosomes induce positive DNA supercoils. Cell 138, 104–113 (2009)

    Article  CAS  Google Scholar 

  21. Keith, K. C. et al. Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol. Cell. Biol. 19, 6130–6139 (1999)

    Article  CAS  Google Scholar 

  22. Shuaib, M., Ouararhni, K., Dimiyrov, S. & Hamiche, A. HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc. Natl Acad. Sci. USA 107, 1349–1354 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Wieland, G., Orthaus, S., Ohndorf, S., Diekmann, S. & Hemmerich, P. Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae . Mol. Cell. Biol. 24, 6620–6630 (2004)

    Article  CAS  Google Scholar 

  24. Sekulic, N., Bassett, E. A., Rogers, D. J. & Black, B. E. The structure of (CENP-A–H4)2 reveals physical features that mark centromeres. Nature 467, 347–351 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Wood, C. M. et al. High-resolution structure of the native histone octamer. Acta Crystallogr. 61, 541–545 (2005)

    Article  CAS  Google Scholar 

  26. English, C. M., Adkins, M. W., Carson, J. J., Churchill, M. E. & Tyler, J. K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006)

    Article  CAS  Google Scholar 

  27. Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338–341 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Zhou, Z. et al. NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B. Nature Struct. Mol. Biol. 15, 868–869 (2008)

    Article  CAS  Google Scholar 

  29. White, C. L., Suto, R. K. & Luger, K. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 5207–5218 (2001)

    Article  CAS  Google Scholar 

  30. Tugarinov, V., Kanelis, V. & Kay, L. E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nature Protocols 1, 749–754 (2006)

    Article  CAS  Google Scholar 

  31. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity untracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000)

    Article  ADS  CAS  Google Scholar 

  32. Cole, J. L., Lary, J. W., Moody, T. P. & Laue, T. M. Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol. 84, 143–179 (2008)

    Article  CAS  Google Scholar 

  33. Schuck, P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 320, 104–124 (2003)

    Article  CAS  Google Scholar 

  34. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995)

    Article  CAS  Google Scholar 

  35. Johnson, B. A. & Blevins, R. A. NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994)

    Article  CAS  Google Scholar 

  36. Schwieters, C. D., Kuszewski, J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003)

    Article  ADS  CAS  Google Scholar 

  37. Zhou, Z. et al. NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B. Nature Struct. Mol. Biol. 15, 868–869 (2008)

    Article  CAS  Google Scholar 

  38. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999)

    Article  CAS  Google Scholar 

  39. Laskowski, R. A. et al. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996)

    Article  CAS  Google Scholar 

  40. Houtman, J. C. et al. Binding specificity of multiprotein signaling complexes is determined by both cooperative interactions and affinity preferences. Biochemistry 43, 4170–4178 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ying, K. Varney, J. F. Ellena and J. Gruschus for help collecting NMR spectra, A. Bax for discussion, C. Klee and M. Lichten for comments on the manuscript, and D. Cleveland for plasmids of human CENP-A and H4 histones. This work is supported by the intramural research programs of NCI, NIDDK and NHLBI.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and H.F. contributed equally to this work. Z.Z. performed protein engineering, biochemical and ITC studies. B.-R.Z. contributed to protein sample preparation. B.-R.Z. and L.M.M.J. contributed to the analysis of ITC data. H.F., K.H., A.Z. and N.T. collected the NMR spectra. H.F. and Z.Z. analysed the NMR data and H.F. solved the structure. R.G. performed the sedimentation experiments. H.X. provided initial plasmids and guidance in cloning. C.W. proposed the project and participated in manuscript writing. Y.B. contributed to the overall strategy, project management and writing of the manuscript. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Yawen Bai.

Supplementary information

Supplementary Information

The file contains Supplementary Methods, Supplementary Tables 1-3, Supplementary Figures 1-21 with legends and additional references. (PDF 4692 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Feng, H., Zhou, BR. et al. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 472, 234–237 (2011). https://doi.org/10.1038/nature09854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09854

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing