Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of microRNA processing by p53

Abstract

MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression, involved in diverse physiological and pathological processes. Although miRNAs can function as both tumour suppressors and oncogenes in tumour development1, a widespread downregulation of miRNAs is commonly observed in human cancers and promotes cellular transformation and tumorigenesis2,3,4. This indicates an inherent significance of small RNAs in tumour suppression. However, the connection between tumour suppressor networks and miRNA biogenesis machineries has not been investigated in depth. Here we show that a central tumour suppressor, p53, enhances the post-transcriptional maturation of several miRNAs with growth-suppressive function, including miR-16-1, miR-143 and miR-145, in response to DNA damage. In HCT116 cells and human diploid fibroblasts, p53 interacts with the Drosha processing complex through the association with DEAD-box RNA helicase p68 (also known as DDX5) and facilitates the processing of primary miRNAs to precursor miRNAs. We also found that transcriptionally inactive p53 mutants interfere with a functional assembly between Drosha complex and p68, leading to attenuation of miRNA processing activity. These findings suggest that transcription-independent modulation of miRNA biogenesis is intrinsically embedded in a tumour suppressive program governed by p53. Our study reveals a previously unrecognized function of p53 in miRNA processing, which may underlie key aspects of cancer biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Post-transcriptional modification of miRNA biogenesis by p53 and p68/p72 in response to DNA damage.
Figure 2: Association between p53 and Drosha complex.
Figure 3: p53 facilitates Drosha-mediated pri-miRNA processing.
Figure 4: Deregulation of miRNA processing by mutant p53.

Similar content being viewed by others

References

  1. Esquela-Kerscher, A. & Slack, F. J. Oncomirs—microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006)

    Article  CAS  Google Scholar 

  2. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet. 39, 673–677 (2007)

    Article  CAS  Google Scholar 

  4. Chang, T. C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet. 40, 43–50 (2008)

    Article  CAS  Google Scholar 

  5. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376–385 (2005)

    Article  CAS  Google Scholar 

  6. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Fukuda, T. et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nature Cell Biol. 9, 604–611 (2007)

    Article  CAS  Google Scholar 

  8. Ozen, M., Creighton, C. J., Ozdemir, M. & Ittmann, M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27, 1788–1793 (2008)

    Article  CAS  Google Scholar 

  9. Zhang, L. et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc. Natl Acad. Sci. USA 105, 7004–7009 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Marton, S. et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 22, 330–338 (2008)

    Article  CAS  Google Scholar 

  11. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006)

    Article  CAS  Google Scholar 

  13. Michael, M. Z., O’ Connor, S. M., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891 (2003)

    CAS  PubMed  Google Scholar 

  14. Karube, Y. et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96, 111–115 (2005)

    Article  CAS  Google Scholar 

  15. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007)

    Article  CAS  Google Scholar 

  17. Tarasov, V. et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6, 1586–1593 (2007)

    Article  CAS  Google Scholar 

  18. Bates, G. J. et al. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J. 24, 543–553 (2005)

    Article  CAS  Google Scholar 

  19. Bueno, M. J. et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13, 496–506 (2008)

    Article  CAS  Google Scholar 

  20. Kondo, N., Toyama, T., Sugiura, H., Fujii, Y. & Yamashita, H. miR-206 expression is down-regulated in estrogen receptor α-positive human breast cancer. Cancer Res. 68, 5004–5008 (2008)

    Article  CAS  Google Scholar 

  21. Tsutsui, M. et al. Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP. Biochem. Biophys. Res. Commun. 372, 856–861 (2008)

    Article  CAS  Google Scholar 

  22. Soussi, T. & Beroud, C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nature Rev. Cancer 1, 233–240 (2001)

    Article  CAS  Google Scholar 

  23. Soussi, T. p53 alterations in human cancer: more questions than answers. Oncogene 26, 2145–2156 (2007)

    Article  CAS  Google Scholar 

  24. Song, H. & Xu, Y. Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways. Cell Cycle 6, 1570–1573 (2007)

    Article  CAS  Google Scholar 

  25. Adorno, M. et al. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009)

    Article  CAS  Google Scholar 

  26. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Mudhasani, R. et al. Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J. Cell Biol. 181, 1055–1063 (2008)

    Article  CAS  Google Scholar 

  28. Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Sengupta, S. & Harris, C. C. p53: traffic cop at the crossroads of DNA repair and recombination. Nature Rev. Mol. Cell Biol. 6, 44–55 (2005)

    Article  CAS  Google Scholar 

  30. Davis, B. N., Hilyard, A. C., Lagna, G. & Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56–61 (2008)

    Article  ADS  CAS  Google Scholar 

  31. Zhao, B. X. et al. p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO J. 25, 5703–5715 (2006)

    Article  CAS  Google Scholar 

  32. Liu, G., Xia, T. & Chen, X. The activation domains, the proline-rich domain, and the C-terminal basic domain in p53 are necessary for acetylation of histones on the proximal p21 promoter and interaction with p300/CREB-binding protein. J. Biol. Chem. 278, 17557–17565 (2003)

    Article  CAS  Google Scholar 

  33. Roth, J., Koch, P., Contente, A. & Dobbelstein, M. Tumor-derived mutations within the DNA-binding domain of p53 that phenotypically resemble the deletion of the proline-rich domain. Oncogene 19, 1834–1842 (2000)

    Article  CAS  Google Scholar 

  34. Rui, Y. et al. Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J. 23, 4583–4594 (2004)

    Article  CAS  Google Scholar 

  35. Ni, J. Q., Liu, L. P., Hess, D., Rietdorf, J. & Sun, F. L. Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription. Genes Dev. 20, 1959–1973 (2006)

    Article  CAS  Google Scholar 

  36. Kim, H. K., Lee, Y. S., Sivaprasad, U., Malhotra, A. & Dutta, A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 174, 677–687 (2006)

    Article  CAS  Google Scholar 

  37. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Matsuyama, K. Kiyono, S. Ehata and R. A. Saito for discussion; M. Saitoh, K. Miyazawa, T. Watabe, K. Horiguchi, T. Shirakihara, K. Harada, M. Oka, A. Mizutani, T. Yamazaki and Y. Yoshimatsu for technical advice and reagents; T. Yokochi and Y. Morishita for encouragement; and all members of the Department of Molecular Pathology, University of Tokyo for assistance. This work was supported by KAKENHI (Grant-in-Aid for Scientific Research no. 17016011) on priority areas ‘New strategies for cancer therapy based on advancement of basic research’ and the Global Center of Excellence Program for ‘Integrative Life Science Based on the Study of Biosignaling Mechanisms’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan. H.I.S. is supported by a research fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Author Contributions H.I.S. conceived and designed the research, performed experiments and analyses and wrote the paper. Y.K., T.I. and S.K. provided key materials. K.S. and K.M. supervised the whole project and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Miyazono.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-18 with Legends and Supplementary Methods. (PDF 1152 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, H., Yamagata, K., Sugimoto, K. et al. Modulation of microRNA processing by p53. Nature 460, 529–533 (2009). https://doi.org/10.1038/nature08199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08199

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing