Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes

Abstract

A decisive step in the biosynthesis of many proteins is their partial or complete translocation across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. Most of these proteins are translocated through a protein-conducting channel that is formed by a conserved, heterotrimeric membrane-protein complex, the Sec61 or SecY complex. Depending on channel binding partners, polypeptides are moved by different mechanisms: the polypeptide chain is transferred directly into the channel by the translating ribosome, a ratcheting mechanism is used by the endoplasmic reticulum chaperone BiP, and a pushing mechanism is used by the bacterial ATPase SecA. Structural, genetic and biochemical data show how the channel opens across the membrane, releases hydrophobic segments of membrane proteins laterally into lipid, and maintains the membrane barrier for small molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The translocation channel.
Figure 2: Model of co-translational translocation.
Figure 3: Model of post-translational translocation in eukaryotes.
Figure 4
Figure 5: Different stages of translocation.

Similar content being viewed by others

References

  1. Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347–358 (1975)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Blobel, G. & Sabatini, D. D. Ribosome-membrane interaction in eukaryotic cells. Biomembranes 2, 193–195 (1971)

    Article  CAS  Google Scholar 

  3. Milstein, C., Brownlee, G. G., Harrison, T. M. & Mathews, M. B. A possible precursor of immunoglobulin light chains. Nature New Biol. 239, 117–120 (1972)

    Article  CAS  PubMed  Google Scholar 

  4. Inouye, H. & Beckwith, J. Synthesis and processing of an Escherichia coli alkaline phosphatase precursor in vitro . Proc. Natl Acad. Sci. USA 74, 1440–1444 (1977)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Halegoua, S., Sekizawa, J. & Inouye, M. A new form of structural lipoprotein of outer membrane of Escherichia coli . J. Biol. Chem. 252, 2324–2330 (1977)

    Article  CAS  PubMed  Google Scholar 

  6. Emr, S. D., Hanley-Way, S. & Silhavy, T. Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23, 79–88 (1981)

    Article  CAS  PubMed  Google Scholar 

  7. Oliver, D. B. & Beckwith, J. E. coli mutant pleiotropically defective in the export of secreted proteins. Cell 25, 765–772 (1981)

    Article  CAS  PubMed  Google Scholar 

  8. Deshaies, R. J. & Schekman, R. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105, 633–645 (1987)

    Article  CAS  PubMed  Google Scholar 

  9. Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67, 852–862 (1975)

    Article  CAS  PubMed  Google Scholar 

  10. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Osborne, A. R., Rapoport, T. A. & van den Berg, B. Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529–550 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. Mothes, W., Prehn, S. & Rapoport, T. A. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13, 3937–3982 (1994)

    Article  Google Scholar 

  13. Akimaru, J., Matsuyama, S., Tokuda, H. & Mizushima, S. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli . Proc. Natl Acad. Sci. USA 88, 6545–6549 (1991)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649–657 (1990)

    Article  CAS  PubMed  Google Scholar 

  15. Gorlich, D. & Rapoport, T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615–630 (1993)

    Article  CAS  PubMed  Google Scholar 

  16. Simon, S. M. & Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell 65, 371–380 (1991)

    Article  CAS  PubMed  Google Scholar 

  17. Crowley, K. S., Reinhart, G. D. & Johnson, A. E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993)

    Article  CAS  PubMed  Google Scholar 

  18. Crowley, K. S., Liao, S. R., Worrell, V. E., Reinhart, G. D. & Johnson, A. E. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461–471 (1994)

    Article  CAS  PubMed  Google Scholar 

  19. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein–translocation complex SecYEG. Nature 418, 662–665 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Bostina, M., Mohsin, B., Kuhlbrandt, W. & Collinson, I. Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J. Mol. Biol. 352, 1035–1043 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Luirink, J. & Sinning, I. SRP-mediated protein targeting: structure and function revisited. Biochim. Biophys. Acta 1694, 17–35 (2004)

    CAS  PubMed  Google Scholar 

  22. Halic, M. & Beckmann, R. The signal recognition particle and its interactions during protein targeting. Curr. Opin. Struct. Biol. 15, 116–125 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. Connolly, T. & Gilmore, R. Formation of a functional ribosome–membrane junction during translocation requires the participation of a GTP-binding protein. J. Cell Biol. 103, 2253–2261 (1986)

    Article  CAS  PubMed  Google Scholar 

  24. Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89, 523–533 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Ng, D. T., Brown, J. D. & Walter, P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol. 134, 269–278 (1996)

    Article  CAS  PubMed  Google Scholar 

  26. Huber, D. et al. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 187, 2983–2991 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huber, D. et al. A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo . Proc. Natl Acad. Sci. USA 102, 18872–18877 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deshaies, R. J., Sanders, S. L., Feldheim, D. A. & Schekman, R. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349, 806–808 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Panzner, S., Dreier, L., Hartmann, E., Kostka, S. & Rapoport, T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81, 561–570 (1995)

    Article  CAS  PubMed  Google Scholar 

  30. Meyer, H. A. et al. Mammalian Sec61 is associated with Sec62 and Sec63. J. Biol. Chem. 275, 14550–14557 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. Tyedmers, J. et al. Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc. Natl Acad. Sci. USA 97, 7214–7219 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Plath, K. & Rapoport, T. A. Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum. J. Cell Biol. 151, 167–178 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane. Cell 97, 553–564 (1999)

    Article  CAS  PubMed  Google Scholar 

  34. Misselwitz, B., Staeck, O. & Rapoport, T. A. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell 2, 593–603 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018–2026 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Osborne, A. R., Clemons, W. M. & Rapoport, T. A. A large conformational change of the translocation ATPase SecA. Proc. Natl Acad. Sci. USA 101, 10937–10942 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Or, E., Navon, A. & Rapoport, T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21, 4470–4479 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duong, F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375–4384 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Or, E., Boyd, D., Gon, S., Beckwith, J. & Rapoport, T. The bacterial ATPase SecA functions as a monomer in protein translocation. J. Biol. Chem. 280, 9097–9105 (2004)

    Article  PubMed  CAS  Google Scholar 

  40. Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S. G. & Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995–2004 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jilaveanu, L. B., Zito, C. R. & Oliver, D. Dimeric SecA is essential for protein translocation. Proc. Natl Acad. Sci. USA 102, 7511–7516 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Keyzer, J. et al. Covalently dimerized SecA is functional in protein translocation. J. Biol. Chem. 280, 35255–35260 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Mitra, K., Frank, J. & Driessen, A. Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work? Nature Struct. Mol. Biol. 13, 957–964 (2006)

    Article  CAS  Google Scholar 

  44. Randall, L. L. et al. Binding of SecB to ribosome-bound polypeptides has the same characteristics as binding to full-length, denatured proteins. Proc. Natl Acad. Sci. USA 94, 802–807 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lill, R., Dowhan, W. & Wickner, W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60, 271–280 (1990)

    Article  CAS  PubMed  Google Scholar 

  46. Randall, L. L. & Hardy, S. J. SecB, one small chaperone in the complex milieu of the cell. Cell. Mol. Life Sci. 59, 1617–1623 (2002)

    Article  CAS  PubMed  Google Scholar 

  47. Musial-Siwek, M., Rusch, S. L. & Kendall, D. A. Selective photoaffinity labeling identifies the signal peptide binding domain on SecA. J. Mol. Biol. 365, 637–648 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97–110 (2007)

    Article  CAS  PubMed  Google Scholar 

  49. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994)

    Article  CAS  PubMed  Google Scholar 

  50. Kim, Y. J. Rajapandi, T. & Oliver, D. SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state. Cell 78, 845–853 (1994)

    Article  PubMed  Google Scholar 

  51. Schiebel, E., Driessen, A. J., Hartl, F. U. & Wickner, W. ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927–939 (1991)

    Article  CAS  PubMed  Google Scholar 

  52. Irihimovitch, V. & Eichler, J. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii . J. Biol. Chem. 278, 12881–12887 (2003)

    Article  CAS  PubMed  Google Scholar 

  53. Ortenberg, R. & Mevarech, M. Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii . J. Biol. Chem. 275, 22839–22846 (2000)

    Article  CAS  PubMed  Google Scholar 

  54. Shaw, A. S., Rottier, P. J. & Rose, J. K. Evidence for the loop model of signal-sequence insertion into the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 85, 7592–7596 (1988)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raden, D., Song, W. & Gilmore, R. Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J. Cell Biol. 150, 53–64 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998)

    Article  CAS  PubMed  Google Scholar 

  57. Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380–3388 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith, M. A., Clemons, W. M., DeMars, C. J. & Flower, A. M. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 187, 6454–6465 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Weihofen, A., Binns, K., Lemberg, M. K., Ashman, K. & Martoglio, B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 2215–2218 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Cannon, K. S., Or, E., Clemons, W. M., Shibata, Y. & Rapoport, T. A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169, 219–225 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tani, K., Tokuda, H. & Mizushima, S. Translocation of proOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization. J. Biol. Chem. 265, 17341–17347 (1990)

    Article  CAS  PubMed  Google Scholar 

  63. Kurzchalia, T. V. et al. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products. Eur. J. Biochem. 172, 663–668 (1988)

    Article  CAS  PubMed  Google Scholar 

  64. Gumbart, J. & Schulten, K. Molecular dynamics studies of the archaeal translocon. Biophys. J. 90, 2356–2367 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tian, P. & Andricioaei, I. Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes. Biophys. J. 90, 2718–2730 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haider, S., Hall, B. A. & Sansom, M. S. Simulations of a protein translocation pore: SecY. Biochemistry 45, 13018–13024 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. Saparov, S. M. et al. Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 26, 501–509 (2007)

    Article  CAS  PubMed  Google Scholar 

  68. Kowarik, M., Kung, S., Martoglio, B. & Helenius, A. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol. Cell 10, 769–778 (2002)

    Article  CAS  PubMed  Google Scholar 

  69. Hamman, B. D., Chen, J. C., Johnson, E. E. & Johnson, A. E. The aqueous pore through the translocon has a diameter of 40–60 Å during cotranslational protein translocation at the ER membrane. Cell 89, 535–544 (1997)

    Article  CAS  PubMed  Google Scholar 

  70. Kaufmann, A., Manting, E. H., Veenendaal, A. K., Driessen, A. J. & van der Does, C. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry 38, 9115–9125 (1999)

    Article  CAS  PubMed  Google Scholar 

  71. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ménétret, J. F. et al. Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol. Cell (in the press)

  73. Voss, N. R., Gerstein, M., Steitz, T. A. & Moore, P. B. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360, 893–906 (2006)

    Article  CAS  PubMed  Google Scholar 

  74. Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Mitra, K. et al. Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements. Mol. Cell 22, 533–543 (2006)

    Article  CAS  PubMed  Google Scholar 

  76. Johnson, A. E. Maintaining the permeability barrier during protein trafficking at the endoplasmic reticulum membrane. Biochem. Soc. Trans. 31, 1227–1231 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Halic, M. et al. Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 312, 745–747 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Schaletzky, J. & Rapoport, T. A. Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane. Mol. Biol. Cell 17, 3860–3869 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721–732 (1996)

    Article  CAS  PubMed  Google Scholar 

  80. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001)

    Article  CAS  PubMed  Google Scholar 

  81. Ménétret, J. F. et al. Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348, 445–457 (2005)

    Article  PubMed  CAS  Google Scholar 

  82. Thanassi, D. G., Stathopoulos, C., Karkal, A. & Li, H. Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of Gram-negative bacteria. Mol. Membr. Biol. 22, 63–72 (2005)

    Article  CAS  PubMed  Google Scholar 

  83. Ahting, U. et al. The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959–968 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rehling, P. et al. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747–1751 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000)

    Article  CAS  PubMed  Google Scholar 

  86. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Gumbart, J. & Schulten, K. Structural determinants of lateral gate opening in the protein translocon. Biochemistry 46, 11147–11157 (2007)

    Article  CAS  PubMed  Google Scholar 

  88. Wessels, H. P. & Spiess, M. Insertion of a multispanning membrane protein occurs sequentially and requires only one signal sequence. Cell 55, 61–70 (1988)

    Article  CAS  PubMed  Google Scholar 

  89. Rapoport, T. A., Goder, V., Heinrich, S. U. & Matlack, K. E. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568–575 (2004)

    Article  CAS  PubMed  Google Scholar 

  90. Le Gall, S., Neuhof, A. & Rapoport, T. The endoplasmic reticulum membrane is permeable to small molecules. Mol. Biol. Cell 15, 447–455 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hamman, B. D., Hendershot, L. M. & Johnson, A. E. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92, 747–758 (1998)

    Article  CAS  PubMed  Google Scholar 

  92. Liao, S., Lin, J., Do, H. & Johnson, A. E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997)

    Article  CAS  PubMed  Google Scholar 

  93. Woolhead, C. A., McCormick, P. J. & Johnson, A. E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004)

    Article  CAS  PubMed  Google Scholar 

  94. Lu, J. & Deutsch, C. Secondary structure formation of a transmembrane segment in Kv channels. Biochemistry 44, 8230–8243 (2005)

    Article  CAS  PubMed  Google Scholar 

  95. Ménétret, J. F. et al. The structure of ribosome–channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000)

    Article  PubMed  Google Scholar 

  96. Schiebel, E. & Wickner, W. Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane. J. Biol. Chem. 267, 7505–7510 (1992)

    Article  CAS  PubMed  Google Scholar 

  97. Junne, T., Schwede, T., Goder, V. & Spiess, M. The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol. Biol. Cell 17, 4063–4068 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maillard, A. P., Lalani, S., Silva, F., Belin, D. & Duong, F. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J. Biol. Chem. 282, 1281–1287 (2007)

    Article  CAS  PubMed  Google Scholar 

  99. Li, W. et al. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell 26, 511–521 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank A. Osborne, Y. Shibata, B. van den Berg and K. Matlack for critical reading of the manuscript, and W. Li and V. Goder for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom A. Rapoport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapoport, T. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007). https://doi.org/10.1038/nature06384

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06384

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing