Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autocatalytic cleavage of Clostridium difficile toxin B

Abstract

Clostridium difficile, the causative agent of nosocomial antibiotic-associated diarrhoea and pseudomembranous colitis, possesses two main virulence factors: the large clostridial cytotoxins A and B. It has been proposed that toxin B is cleaved by a cytosolic factor of the eukaryotic target cell during its cellular uptake. Here we report that cleavage of not only toxin B, but also all other large clostridial cytotoxins, is an autocatalytic process dependent on host cytosolic inositolphosphate cofactors. A covalent inhibitor of aspartate proteases, 1,2-epoxy-3-(p-nitrophenoxy)propane, completely blocked toxin B function on cultured cells and was used to identify its catalytically active protease site. To our knowledge this is the first report on a bacterial toxin that uses eukaryotic signals for induced autoproteolysis to deliver its toxic domain into the cytosol of target cells. On the basis of our data, we present an integrated model for the uptake and inositolphosphate-induced activation of toxin B.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purified cytosolic splenocyte extract in the in vitro TcdB cleavage assay and mass spectrometry.
Figure 2: In vitro cleavage of LCTs by purified splenocyte extracts or inositolhexaphosphate.
Figure 3: An integrated model of events necessary for the cellular cytotoxic action of TcdB.

Similar content being viewed by others

References

  1. Tenover, F. C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control 34, S3–S10 (2006)

    Article  Google Scholar 

  2. Fishman, N. Antimicrobial stewardship. Am. J. Infect. Control 34, S55–S63 (2006)

    Article  Google Scholar 

  3. Bartlett, J. G., Chang, T. W., Gurwith, M., Gorbach, S. L. & Onderdonk, A. B. Antibiotic-associated pseudomembranous colitis due to toxin-producing Clostridia. N. Engl. J. Med. 298, 531–534 (1978)

    Article  CAS  Google Scholar 

  4. George, R. H. et al. Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br. Med. J. 1, 695 (1978)

    Article  CAS  Google Scholar 

  5. Gorbach, S. L. Antibiotics and Clostridium difficile. N. Engl. J. Med. 341, 1690–1691 (1999)

    Article  CAS  Google Scholar 

  6. Davey, P. et al. Systematic review of antimicrobial drug prescribing in hospitals. Emerg. Infect. Dis. 12, 211–216 (2006)

    Article  Google Scholar 

  7. Lyerly, D. M., Krivan, H. C. & Wilkins, T. D. Clostridium difficile: its disease and toxins. Clin. Microbiol. Rev. 1, 1–18 (1988)

    Article  CAS  Google Scholar 

  8. Voth, D. E. & Ballard, J. D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247–263 (2005)

    Article  CAS  Google Scholar 

  9. Eichel-Streiber, C., Laufenberg-Feldmann, R., Sartingen, S., Schulze, J. & Sauerborn, M. Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol. Gen. Genet. 233, 260–268 (1992)

    Article  Google Scholar 

  10. Green, G. A., Schue, V. & Monteil, H. Cloning and characterization of the cytotoxin L-encoding gene of Clostridium sordellii: homology with Clostridium difficile cytotoxin B. Gene 161, 57–61 (1995)

    Article  CAS  Google Scholar 

  11. Hofmann, F., Herrmann, A., Habermann, E. & Eichel-Streiber, C. Sequencing and analysis of the gene encoding the α-toxin of Clostridium novyi proves its homology to toxins A and B of Clostridium difficile. Mol. Gen. Genet. 247, 670–679 (1995)

    Article  CAS  Google Scholar 

  12. Eichel-Streiber, C., Boquet, P., Sauerborn, M. & Thelestam, M. Large clostridial cytotoxins—a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol. 4, 375–382 (1996)

    Article  Google Scholar 

  13. Rupnik, M. et al. Revised nomenclature of Clostridium difficile toxins and associated genes. J. Med. Microbiol. 54, 113–117 (2005)

    Article  CAS  Google Scholar 

  14. Loo, V. G. et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 353, 2442–2449 (2005)

    Article  CAS  Google Scholar 

  15. McDonald, L. C. et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N. Engl. J. Med. 353, 2433–2441 (2005)

    Article  CAS  Google Scholar 

  16. Centers for Disease Control and Prevention (CDC) Severe Clostridium difficile-associated disease in populations previously at low risk—four states, 2005. Morb. Mortal. Wkly Rep. 54, 1201–1205 (2005)

    Google Scholar 

  17. Kuijper, E. J., Coignard, B. & Tull, P. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin. Microbiol. Infect. 12, (Suppl. 6)2–18 (2006)

    Article  CAS  Google Scholar 

  18. McDonald, L. C. Clostridium difficile: responding to a new threat from an old enemy. Infect. Control Hosp. Epidemiol. 26, 672–675 (2005)

    Article  Google Scholar 

  19. Eichel-Streiber, C., Sauerborn, M. & Kuramitsu, H. K. Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J. Bacteriol. 174, 6707–6710 (1992)

    Article  Google Scholar 

  20. Pfeifer, G. et al. Cellular uptake of Clostridium difficile toxin B. Translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J. Biol. Chem. 278, 44535–44541 (2003)

    Article  CAS  Google Scholar 

  21. Hofmann, F., Busch, C., Prepens, U., Just, I. & Aktories, K. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J. Biol. Chem. 272, 11074–11078 (1997)

    Article  CAS  Google Scholar 

  22. Tucker, K. D. & Wilkins, T. D. Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect. Immun. 59, 73–78 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Karlsson, K. A. Microbial recognition of target-cell glycoconjugates. Curr. Opin. Struct. Biol. 5, 622–635 (1995)

    Article  CAS  Google Scholar 

  24. Florin, I. & Thelestam, M. Internalization of Clostridium difficile cytotoxin into cultured human lung fibroblasts. Biochim. Biophys. Acta 763, 383–392 (1983)

    Article  CAS  Google Scholar 

  25. Florin, I. & Thelestam, M. Lysosomal involvement in cellular intoxication with Clostridium difficile toxin B. Microb. Pathog. 1, 373–385 (1986)

    Article  CAS  Google Scholar 

  26. Henriques, B., Florin, I. & Thelestam, M. Cellular internalisation of Clostridium difficile toxin A. Microb. Pathog. 2, 455–463 (1987)

    Article  CAS  Google Scholar 

  27. Giesemann, T. et al. Cholesterol-dependent pore formation of Clostridium difficile toxin A. J. Biol. Chem. 281, 10808–10815 (2006)

    Article  CAS  Google Scholar 

  28. Qa'Dan, M., Spyres, L. M. & Ballard, J. D. pH-induced conformational changes in Clostridium difficile toxin B. Infect. Immun. 68, 2470–2474 (2000)

    Article  CAS  Google Scholar 

  29. Rupnik, M. et al. Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology 151, 199–208 (2005)

    Article  CAS  Google Scholar 

  30. Sehr, P. et al. Glucosylation and ADP ribosylation of Rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling. Biochemistry 37, 5296–5304 (1998)

    Article  CAS  Google Scholar 

  31. Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503 (1995)

    Article  ADS  CAS  Google Scholar 

  32. Moos, M. & Eichel-Streiber, C. Purification and evaluation of large clostridial cytotoxins that inhibit small GTPases of Rho and Ras subfamilies. Methods Enzymol. 325, 114–125 (2000)

    Article  CAS  Google Scholar 

  33. Hsu, F. F., Turk, J. & Gross, M. L. Structural distinction among inositol phosphate isomers using high-energy and low-energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Mass Spectrom. 38, 447–457 (2003)

    Article  ADS  CAS  Google Scholar 

  34. Fernandez-Patron, C., Hardy, E., Sosa, A., Seoane, J. & Castellanos, L. Double staining of Coomassie blue-stained polyacrylamide gels by imidazole-sodium dodecyl sulfate-zinc reverse staining: sensitive detection of Coomassie blue-undetected proteins. Anal. Biochem. 224, 263–269 (1995)

    Article  CAS  Google Scholar 

  35. Shears, S. B. Assessing the omnipotence of inositol hexakisphosphate. Cell. Signal. 13, 151–158 (2001)

    Article  CAS  Google Scholar 

  36. Saiardi, A., Bhandari, R., Resnick, A. C., Snowman, A. M. & Snyder, S. H. Phosphorylation of proteins by inositol pyrophosphates. Science 306, 2101–2105 (2004)

    Article  ADS  CAS  Google Scholar 

  37. Sauerborn, M., Hegenbarth, S., Laufenberg-Feldmann, R., Leukel, P. & von Eichel-Streiber, C. Monoclonal antibodies discriminating between Clostridium difficile toxins A and B. Int. J. Med. Microbiol. 24, (Suppl.)510–511 (1994)

    Google Scholar 

  38. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genet. 38, 779–786 (2006)

    Article  Google Scholar 

  39. Rao, M. B., Tanksale, A. M., Ghatge, M. S. & Deshpande, V. V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Just, I. & Gerhard, R. Large clostridial cytotoxins. Rev. Physiol. Biochem. Pharmacol. 152, 23–47 (2004)

    Article  CAS  Google Scholar 

  41. Barth, H. et al. Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells. J. Biol. Chem. 276, 10670–10676 (2001)

    Article  CAS  Google Scholar 

  42. Macbeth, M. R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309, 1534–1539 (2005)

    Article  ADS  CAS  Google Scholar 

  43. Byrum, J., Jordan, S., Safrany, S. T. & Rodgers, W. Visualization of inositol phosphate-dependent mobility of Ku: depletion of the DNA-PK cofactor InsP6 inhibits Ku mobility. Nucleic Acids Res. 32, 2776–2784 (2004)

    Article  CAS  Google Scholar 

  44. York, J. D., Guo, S., Odom, A. R., Spiegelberg, B. D. & Stolz, L. E. An expanded view of inositol signaling. Adv. Enzyme Regul. 41, 57–71 (2001)

    Article  CAS  Google Scholar 

  45. Braun, V. & von Eichel-Streiber, C. Virulence-associated mobile elements in Bacilli and Clostridia. In Pathogenicity Islands and Other Mobile Elements (American Society of Microbiology, Washington DC, 1999)

    Google Scholar 

  46. Braun, V., Hundsberger, T., Leukel, P., Sauerborn, M. & Eichel-Streiber, C. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181, 29–38 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Müller, J. Forsch, A. Malotta, N. Robertz and E. Scholz for technical assistance; M. Moos, C. Srokowski and C. Tertilt for critically discussing the manuscript; and A. Lange for his advice in affinity purification of TcdB. Special thanks to M. Popoff for providing C. sordellii TcsL of high quality. This work was supported by grants from the Stiftung Innovation Rheinland-Pfalz and Deutsche Forschungs Gemeinschaft (to C.v.E.-S.). S.T. and H.S. were supported by the Sonderforschungsbereich ‘Invasion und Persistenz bei Infektionen’, the Hochschulbauförderungsgesetz Program (H.S.), and the Immunology Cluster of Excellence (ICE) at the University of Mainz (H.S.). M.R. was supported by an EMBO grant. C.v.E.-S. acknowledges the support of the University of Mainz for offering additional laboratory space in the Verfügungsgebäude für Forschung und Entwicklung.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hansjörg Schild or Christoph von Eichel-Streiber.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary Figures 1-5 with Legends and Supplementary Discussion (PDF 951 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reineke, J., Tenzer, S., Rupnik, M. et al. Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446, 415–419 (2007). https://doi.org/10.1038/nature05622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05622

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing