Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A bacterial dynamin-like protein

Abstract

Dynamins form a superfamily of large mechano-chemical GTPases that includes the classical dynamins and dynamin-like proteins (DLPs)1. They are found throughout the Eukarya, functioning in core cellular processes such as endocytosis and organelle division1. Many bacteria are predicted by sequence to possess large GTPases with the same multidomain architecture that is found in DLPs2. Mechanistic dissection of dynamin family members has been impeded by a lack of high-resolution structural data currently restricted to the GTPase3,4 and pleckstrin homology5 domains, and the dynamin-related human guanylate-binding protein6. Here we present the crystal structure of a cyanobacterial DLP in both nucleotide-free and GDP-associated conformation. The bacterial DLP shows dynamin-like qualities, such as helical self-assembly and tubulation of a lipid bilayer. In vivo, it localizes to the membrane in a manner reminiscent of FZL7, a chloroplast-specific dynamin-related protein with which it shares sequence similarity. Our results provide structural and mechanistic insight that may be relevant across the dynamin superfamily. Concurrently, we show compelling similarity between a cyanobacterial and chloroplast DLP that, given the endosymbiotic ancestry of chloroplasts8, questions the evolutionary origins of dynamins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BDLP is a GTPase capable of decorating and tubulating liposomes.
Figure 2: Crystal structures of BDLP in GDP-associated and nucleotide-free conformations.
Figure 3: BDLP shows a punctate pattern of localization in filamentous N. punctiforme.

Similar content being viewed by others

References

  1. Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004)

    Article  CAS  Google Scholar 

  2. van der Bliek, A. M. Functional diversity in the dynamin family. Trends Cell Biol. 9, 96–102 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Reubold, T. F. et al. Crystal structure of the GTPase domain of rat dynamin 1. Proc. Natl Acad. Sci. USA 102, 13093–13098 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niemann, H. H., Knetsch, M. L., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20, 5813–5821 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Crystal structure at 2.2 Å resolution of the pleckstrin homology domain from human dynamin. Cell 79, 199–209 (1994)

    Article  CAS  PubMed  Google Scholar 

  6. Prakash, B., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403, 567–571 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Gao, H., Sage, T. L. & Osteryoung, K. W. FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology. Proc. Natl Acad. Sci. USA 103, 6759–6764 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. McFadden, G. I. Endosymbiosis and evolution of the plant cell. Curr. Opin. Plant Biol. 2, 513–519 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347, 256–261 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Song, B. D. & Schmid, S. L. A molecular motor or a regulator? Dynamin’s in a class of its own. Biochemistry 42, 1369–1376 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and γ-phosphate analogues. J. Biol. Chem. 272, 28030–28035 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Warnock, D. E., Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembly stimulates its GTPase activity. J. Biol. Chem. 271, 22310–22314 (1996)

    Article  CAS  PubMed  Google Scholar 

  15. Tuma, P. L. & Collins, C. A. Activation of dynamin GTPase is a result of positive cooperativity. J. Biol. Chem. 269, 30842–30847 (1994)

    CAS  PubMed  Google Scholar 

  16. Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J. 15, 6241–6250 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Danino, D., Moon, K. H. & Hinshaw, J. E. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J. Struct. Biol. 147, 259–267 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. Narayanan, R., Leonard, M., Song, B. D., Schmid, S. L. & Ramaswami, M. An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function. J. Cell Biol. 169, 117–126 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biol. 3, 922–926 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Y. J., Zhang, P., Egelman, E. H. & Hinshaw, J. E. The stalk region of dynamin drives the constriction of dynamin tubes. Nature Struct. Mol. Biol. 11, 574–575 (2004)

    Article  CAS  Google Scholar 

  22. Klockow, B. et al. The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO J. 21, 240–250 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghosh, A., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature 440, 101–104 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Hermann, G. J. et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359–373 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santel, A. & Fuller, M. T. Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867–874 (2001)

    CAS  PubMed  Google Scholar 

  27. Rapaport, D., Brunner, M., Neupert, W. & Westermann, B. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 273, 20150–20155 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. Stock, D., Perisic, O. & Löwe, J. Robotic nanolitre protein crystallisation at the MRC Laboratory of Molecular Biology. Prog. Biophys. Mol. Biol. 88, 311–327 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support on beamlines ID29, ID14eh4 and ID23eh1 at the ESRF. We thank J. Meeks and K. Hagan for supplying bacterial strains and N. punctiforme plasmids including pSCR202; S. Reichelt for support with confocal microscopy; and J. Butler for performing the analytical ultracentrifugation experiments. We thank the MRC for a PhD student fellowship to H.H.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Löwe.

Ethics declarations

Competing interests

Atomic coordinates produced in this study have been deposited in the Protein Data Bank under accession codes 2J69 (BDLP) and 2J68 (BDLP-GDP). Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figure 1–3, Supplementary Methods, Supplementary Table 1 and additional references. (PDF 3158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, H., Löwe, J. A bacterial dynamin-like protein. Nature 444, 766–769 (2006). https://doi.org/10.1038/nature05312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05312

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing