Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective elimination of messenger RNA prevents an incidence of untimely meiosis

Abstract

Much remains unknown about the molecular regulation of meiosis. Here we show that meiosis-specific transcripts are selectively removed if expressed during vegetative growth in fission yeast. These messenger RNAs contain a cis-acting region—which we call the DSR—that confers this removal via binding to a YTH-family protein Mmi1. Loss of Mmi1 function severely impairs cell growth owing to the untimely expression of meiotic transcripts. Microarray analysis reveals that at least a dozen such meiosis-specific transcripts are eliminated by the DSR–Mmi1 system. Mmi1 remains in the form of multiple nuclear foci during vegetative growth. At meiotic prophase these foci precipitate to a single focus, which coincides with the dot formed by the master meiosis-regulator Mei2. A meiotic arrest due to the loss of the Mei2 dot is released by a reduction in Mmi1 activity. We propose that Mei2 turns off the DSR–Mmi1 system by sequestering Mmi1 to the dot and thereby secures stable expression of meiosis-specific transcripts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective removal of mei4 mRNA in mitotic cells.
Figure 2: DSRs found on meiosis-specific mRNAs.
Figure 3: The mmi1 gene and expression of meiotic mRNAs in the absence of mmi1 function.
Figure 4: The Mei2 dot anchors Mmi1.

Similar content being viewed by others

References

  1. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Primig, M. et al. The core meiotic transcriptome in budding yeasts. Nature Genet. 26, 415–423 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Mata, J., Lyne, R., Burns, G. & Bahler, J. The transcriptional program of meiosis and sporulation in fission yeast. Nature Genet. 32, 143–147 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Kupeic, M., Byers, B., Esposite, R. E. & Mitchell, A. P. in The Molecular and Cellular Biology of the Yeast Sacchromyces (eds Pringle, J., Broach, J. & Jones, E.) 889–1036 (Cold Spring Harbor Laboratory Press, New York, 1997)

    Google Scholar 

  5. Yamamoto, M., Imai, Y. & Watanabe, Y. in The Molecular and Cellular Biology of the YeastSacchromyces (eds Pringle, J., Broach, J. & Jones, E.) 889–1036 (Cold Spring Harbor Laboratory Press, New York, 1997)

    Google Scholar 

  6. Kunitomo, H., Higuchi, T., Iino, Y. & Yamamoto, M. A zinc-finger protein, Rst2p, regulates transcription of the fission yeast ste11+ gene, which encodes a pivotal transcription factor for sexual development. Mol. Biol. Cell 11, 3205–3217 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Higuchi, T., Watanabe, Y. & Yamamoto, M. Protein kinase A regulates sexual development and gluconeogenesis through phosphorylation of the Zn finger transcriptional activator Rst2p in fission yeast. Mol. Cell. Biol. 22, 1–11 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sugimoto, A., Iino, Y., Maeda, T., Watanabe, Y. & Yamamoto, M. Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev. 5, 1990–1999 (1991)

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe, Y. & Yamamoto, M. S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78, 487–498 (1994)

    Article  CAS  PubMed  Google Scholar 

  10. Watanabe, Y., Shinozaki-Yabana, S., Chikashige, Y., Hiraoka, Y. & Yamamoto, M. Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature 386, 187–190 (1997)

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Yamashita, A., Watanabe, Y., Nukina, N. & Yamamoto, M. RNA-assisted nuclear transport of the meiotic regulator Mei2p in fission yeast. Cell 95, 115–123 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Shimada, T., Yamashita, A. & Yamamoto, M. The fission yeast meiotic regulator Mei2p forms a dot structure in the horse-tail nucleus in association with the sme2 locus on chromosome II. Mol. Biol. Cell 14, 2461–2469 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horie, S. et al. The Schizosaccharomyces pombe mei4+ gene encodes a meiosis-specific transcription factor containing a forkhead DNA-binding domain. Mol. Cell. Biol. 18, 2118–2129 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamashita, A., Watanabe, Y. & Yamamoto, M. Microtubule-associated coiled-coil protein Ssm4 is involved in the meiotic development in fission yeast. Genes Cells 2, 155–166 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Niccoli, T., Yamashita, A., Nurse, P. & Yamamoto, M. The p150-Glued Ssm4p regulates microtubular dynamics and nuclear movement in fission yeast. J. Cell Sci. 117, 5543–5556 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999)

    Article  CAS  ADS  PubMed  Google Scholar 

  17. Parisi, S. et al. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol. Cell. Biol. 19, 3515–3528 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stoilov, P., Rafalska, I. & Stamm, S. YTH: a new domain in nuclear proteins. Trends Biochem. Sci. 27, 495–497 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Iino, Y. & Yamamoto, M. Mutants of Schizosaccharomyces pombe which sporulate in the haploid state. Mol. Gen. Genet. 198, 416–421 (1985)

    Article  CAS  Google Scholar 

  20. Nurse, P. Mutants of the Schizosaccharomyces pombe which alter the shift between cell proliferation and sporulation. Mol. Gen. Genet. 198, 497–502 (1985)

    Article  Google Scholar 

  21. McLeod, M. & Beach, D. A specific inhibitor of the ran1+ protein kinase regulates entry into meiosis in Schizosaccharomyces pombe. Nature 332, 509–514 (1988)

    Article  CAS  ADS  PubMed  Google Scholar 

  22. Watanabe, T. et al. Comprehensive isolation of meiosis-specific genes identifies novel proteins and unusual non-coding transcripts in Schizosaccharomyces pombe. Nucleic Acids Res. 29, 2327–2337 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glynn, J. M., Lustig, R. J., Berlin, A. & Chang, F. Role of bud6p and tea1p in the interaction between actin and microtubules for the establishment of cell polarity in fission yeast. Curr. Biol. 11, 836–845 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Sato, M., Shinozaki-Yabana, S., Yamashita, A., Watanabe, Y. & Yamamoto, M. The fission yeast meiotic regulator Mei2p undergoes nucleocytoplasmic shuttling. FEBS Lett. 499, 251–255 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. Hartmann, A. M., Nayler, O., Schwaiger, F. W., Obermeier, A. & Stamm, S. The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59fyn. Mol. Biol. Cell 11, 3909–3926 (1999)

    Article  Google Scholar 

  26. Nayler, O., Hartmann, A. M. & Stamm, S. The ER repeat protein YT521-B localizes to a novel subnuclear compartment. J. Cell Biol. 150, 949–962 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rafalska, I. et al. The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation. Hum. Mol. Genet. 13, 1535–1549 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Surosky, R. T. & Esposito, R. E. Early meiotic transcripts are highly unstable in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 3948–3958 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Szankasi, P. & Smith, G. R. Requirement of S. pombe exonuclease II, a homologue of S. cerevisiae Sep1, for normal mitotic growth and viability. Curr. Genet. 30, 284–293 (1996)

    Article  CAS  PubMed  Google Scholar 

  30. Iino, Y., Sugimoto, A. & Yamamoto, M. S. pombe pac1+, whose overexpression inhibits sexual development, encodes a ribonuclease III-like Rnase. EMBO J. 10, 221–226 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hansen, K. R. et al. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol. Cell. Biol. 25, 590–601 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. Mendell, J. T. et al. Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes. Mol. Cell. Biol. 20, 8944–8957 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3′ → 5′ exonucleases. Genes Dev. 13, 2148–2158 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jensen, T. H. & Moore, C. Reviving the exosome. Cell 121, 660–662 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. Milligan, L., Torchet, C., Allmang, C., Shipman, T. & Tollervey, D. A nuclear surveillance pathway for mRNAs with defective polyadenylation. Mol. Cell. Biol. 25, 9996–10004 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maundrell, K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123, 127–130 (1993)

    Article  CAS  PubMed  Google Scholar 

  38. Basi, G., Schmid, E. & Maundrell, K. TATA box mutations in the Schizosaccharomyces pombe nmt1 promotor affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123, 131–136 (1993)

    Article  CAS  PubMed  Google Scholar 

  39. Kitajima, T. S., Miyazaki, Y., Yamamoto, M. & Watanabe, Y. Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO J. 22, 5643–5653 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, S. & Bruce, W. B. Expression profiling using cDNA microarrays. Methods Mol. Biol. 236, 365–380 (2003)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. M. Carr for providing the chromosomal N-terminal tagging system, G. R. Smith for fission yeast strains, and M. Sato for help in strain construction. This work was supported by a Grant-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to M.Y.) and a Grant from the Japan Science and Technology Agency (to Y. Hiraoka). Y. Harigaya was a recipient of a JSPS Research Fellowship for Young Scientists (DC) associating with a 21st Century COE Program led by M.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yamamoto.

Ethics declarations

Competing interests

The entire microarray data obtained in this study has been deposited in the Gene Expression Omnibus (GEO), under the accession number GSE3314. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1–5, Supplementary Methods and Supplementary Table 1. (PDF 3933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harigaya, Y., Tanaka, H., Yamanaka, S. et al. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442, 45–50 (2006). https://doi.org/10.1038/nature04881

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04881

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing