Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans

Abstract

Glycosaminoglycans such as heparan sulphate and chondroitin sulphate are extracellular sugar chains involved in intercellular signalling. Disruptions of genes encoding enzymes that mediate glycosaminoglycan biosynthesis have severe consequences in Drosophila and mice1,2,3,4,5. Mutations in the Drosophila gene sugarless, which encodes a UDP-glucose dehydrogenase, impairs developmental signalling through the Wnt family member Wingless, and signalling by the fibroblast growth factor and Hedgehog pathways. Heparan sulphate is involved in these pathways6,7,8, but little is known about the involvement of chondroitin. Undersulphated and oversulphated chondroitin sulphate chains have been implicated in other biological processes, however, including adhesion of erythrocytes infected with malaria parasite to human placenta and regulation of neural development9,10. To investigate chondroitin functions, we cloned a chondroitin synthase homologue of Caenorhabditis elegans and depleted expression of its product by RNA-mediated interference and deletion mutagenesis. Here we report that blocking chondroitin synthesis results in cytokinesis defects in early embryogenesis. Reversion of cytokinesis is often observed in chondroitin-depleted embryos, and cell division eventually stops, resulting in early embryonic death. Our findings show that chondroitin is required for embryonic cytokinesis and cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of chondroitin proteoglycan and the nematode ChSy gene.
Figure 2: Chondroitin in C. elegans and lethal phenotypes in ChSy-disrupted worms.
Figure 3: Depletion of chondroitin by RNAi treatment (feeding method) and the effects of chondroitin depletion on embryonic cytokinesis.
Figure 4: Reversion of cytokinesis in chondroitin-depleted embryos.

Similar content being viewed by others

References

  1. Forsberg, E. & Kjellén, L. Heparan sulfate: lessons from knockout mice. J. Clin. Invest. 108, 175–180 (2001)

    Article  CAS  Google Scholar 

  2. Iozzo, R. V. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J. Clin. Invest. 108, 165–167 (2001)

    Article  CAS  Google Scholar 

  3. Lander, A. D. & Selleck, S. B. The elusive functions of proteoglycans: in vivo veritas. J. Cell Biol. 148, 227–232 (2000)

    Article  CAS  Google Scholar 

  4. Perrimon, N. & Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404, 725–728 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Sugahara, K. & Kitagawa, H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr. Opin. Struct. Biol. 10, 518–527 (2000)

    Article  CAS  Google Scholar 

  6. Hacker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3573 (1997)

    CAS  PubMed  Google Scholar 

  7. Lin, X., Buff, E. M. & Perrimon, N. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126, 3715–3723 (1999)

    CAS  PubMed  Google Scholar 

  8. Tsuda, M. et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–280 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Sugahara, K. & Yamada, S. Structure and function of oversulfated chondroitin sulfate variants: unique sulfation patterns and neuroregulatory activities. Trends Glycosci. Glycotechnol. 12, 321–349 (2000)

    Article  CAS  Google Scholar 

  11. Uyama, T., Kitagawa, H., Tamura, J. & Sugahara, K. Molecular cloning and expression of human chondroitin N-acetylgalactosaminyltransferase: the key enzyme for chain initiation and elongation of chondroitin/dermatan sulfate on the protein linkage region tetrasaccharide shared by heparin/heparan sulfate. J. Biol. Chem. 277, 8841–8846 (2002)

    Article  CAS  Google Scholar 

  12. Uyama, T. et al. Molecular cloning and expression of a second chondroitin N-acetylgalactosaminyltransferase involved in the biosynthetic initiation and elongation of chondroitin/dermatan sulfate. J. Biol. Chem. 278, 3072–3078 (2003)

    Article  CAS  Google Scholar 

  13. Kitagawa, H., Uyama, T. & Sugahara, K. Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276, 38721–38726 (2001)

    Article  CAS  Google Scholar 

  14. Toyoda, H., Kinoshita-Toyoda, A. & Selleck, S. B. Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that tout-velu, a Drosophila gene related to EXT tumour suppressors, affects heparan sulfate in vivo. J. Biol. Chem. 275, 2269–2275 (2000)

    Article  CAS  Google Scholar 

  15. Yamada, S. et al. Demonstration of glycosaminoglycans in Caenorhabditis elegans. FEBS Lett. 459, 327–331 (1999)

    Article  CAS  Google Scholar 

  16. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002)

    Article  CAS  Google Scholar 

  17. Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11, 171–176 (2001)

    Article  CAS  Google Scholar 

  18. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2 research0002.1–0002.10 [online] 〈http://genomebiology.com/2000/2/1/research/0002〉 (2001)

  19. Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001)

    Article  CAS  Google Scholar 

  20. Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131–136 (2000)

    Article  CAS  Google Scholar 

  21. Gengyo-Ando, K. & Mitani, S. Characterization of mutations induced by ethyl methanesulfonate, UV, and trimethylpsoralen in the nematode Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 269, 64–69 (2000)

    Article  CAS  Google Scholar 

  22. Kitagawa, H. et al. rib-2, a Caenorhabditis elegans homolog of the human tumour suppressor EXT genes encodes a novel α1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J. Biol. Chem. 276, 4834–4838 (2001)

    Article  CAS  Google Scholar 

  23. Lindahl, U. & Rodén, L. in Glycoproteins (ed. Gottschalk, A.) 491–517 (Elsevier, New York, 1972)

    Google Scholar 

  24. Bulik, D. A. et al. sqv-3, -7, and -8, a set of genes affecting morphogenesis in Caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. Proc. Natl Acad. Sci. USA 97, 10838–10843 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Herman, T., Hartwieg, E. & Horvitz, H. R. sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc. Natl Acad. Sci. USA 96, 968–973 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Kitagawa, H. et al. Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 273, 6615–6618 (1998)

    Article  CAS  Google Scholar 

  27. Christensen, M. & Strange, K. Developmental regulation of a novel outwardly rectifying mechanosensitive anion channel in Caenorhabditis elegans. J. Biol. Chem. 276, 45024–45030 (2001)

    Article  CAS  Google Scholar 

  28. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Brecht, M., Mayer, U., Schlosser, E. & Prehm, P. Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. Biochem. J. 239, 445–450 (1986)

    Article  CAS  Google Scholar 

  30. Miller, D. M. & Shakes, D. C. Caenorhabditis elegans. in Modern Biological Analysis of an Organism (eds Epstein, H. F. & Shakes, D. C.) 365–394 (Academic, London, 1995)

    Google Scholar 

Download references

Acknowledgements

We thank T. Stiernagle and the Caenorhabditis Genetics Center for all worms and E. coli strains, and Y. Kohara for the yk clones. K.N. was supported by PRESTO and SORST of the Japan Science and Technology Corporation (JST). S.M. and K.H.N. were supported partly by Sasakawa Scientific Research Grant (JSS). The work at Kobe Pharmaceutical University was supported in part by a Science Research Promotion Fund from the Japan Private School Promotion Foundation, and by Grants-in-Aid for Scientific Research C (to H.K.) and Scientific Research B (to K.S.) from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuyuki Sugahara or Kazuya Nomura.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuguchi, S., Uyama, T., Kitagawa, H. et al. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 423, 443–448 (2003). https://doi.org/10.1038/nature01635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01635

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing