Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional profiling of the Saccharomyces cerevisiae genome

Abstract

Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed ‘molecular bar codes’ uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The KanMX deletion cassette module.
Figure 2: Growth of deletion strains exhibiting reduced fitness in galactose medium.
Figure 3: Clustering of genes required for growth in conditions of high osmolarity.
Figure 4: Comparison of expression and fitness profiling data.
Figure 5: The seven phenotypic categories of deletion mutant morphologies.

Similar content being viewed by others

References

  1. Wach, A., Brachat, A. & Phillippsen, P. Guidelines for EUROFAN B0 Program: ORF deletants, plasmid tools, basic functional analyses. EUROFAN [online] 〈http://mips.gsf.de/proj/eurofan/eurofan_1/b0/home_requisites/guideline/sixpack.html〉 (1996).

  2. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999)

    Article  CAS  Google Scholar 

  3. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Piano, F., Schetterdagger, A. J., Mangone, M., Stein, L. & Kemphues, K. J. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol. 10, 1619–1622 (2000)

    Article  CAS  Google Scholar 

  5. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Liu, L. X. et al. High-throughput isolation of Caenorhabditis elegans deletion mutants. Genome Res. 9, 859–867 (1999)

    Article  CAS  Google Scholar 

  7. Zambrowicz, B. P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Hamer, L. et al. Gene discovery and gene function assignment in filamentous fungi. Proc. Natl Acad. Sci. USA 98, 5110–5115 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994)

    Article  CAS  Google Scholar 

  10. Mewes, H. W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Jones, E. W. & Fink, G. R. in The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 181–300 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1982)

    Google Scholar 

  12. Posas, F. et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86, 865–875 (1996)

    Article  CAS  Google Scholar 

  13. Yale, J. & Bohnert, H. J. Transcript expression in Saccharomyces cerevisiae at high salinity. J. Biol. Chem. 276, 15996–16007 (2001)

    Article  CAS  Google Scholar 

  14. Poon, P. P. et al. Saccharomyces cerevisiae Gcs1 is an ADP-ribosylation factor GTPase-activating protein. Proc. Natl Acad. Sci. USA 93, 10074–10077 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Causton, H. C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337 (2001)

    Article  CAS  Google Scholar 

  16. Roth, F. P., Hughes, J. D., Estep, P. W. & Church, G. M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnol. 16, 939–945 (1998)

    Article  CAS  Google Scholar 

  17. Li, N. & Snyder, M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol. Biol. Cell 12, 2147–2170 (2001)

    Article  Google Scholar 

  18. Benzer, S. On the topography of the genetic fine structure. Proc. Natl Acad. Sci. USA 47, 403–415 (1961)

    Article  ADS  CAS  Google Scholar 

  19. Sherman, F., Fink, G. R. & Hinks, J. B. Methods in Yeast Genetics 145–149 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1986)

    Google Scholar 

  20. Guthrie, C. & Fink, G. R. (eds) Guide to Yeast Genetics and Molecular Biology 12–15 (Academic, San Diego, California, 1991)

  21. Hoffman, C. S. & Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272 (1987)

    Article  CAS  Google Scholar 

  22. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Bastiaens, J. Howard Dees, R. Diaz, F. Dietrich, K. Freidel, N. Liebundguth, C. Rebischong, R. Schiavon, J. Schneider, T. Verhoeven and R. Wysoki for technical assistance. G.G. thanks C. Nislow for critical readings of the manuscript. This work was primarily supported by grants from the European Commission and the National Human Genome Research Institute (USA), the Medical Research Council of Canada, and the Swiss Office for Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald W. Davis.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giaever, G., Chu, A., Ni, L. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002). https://doi.org/10.1038/nature00935

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00935

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing