Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

Abstract

A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma adrenocorticotropic hormone, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open-field, elevated plus maze, holeboard, light–dark box and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. McEwen BS . Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 2008; 583: 174–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Toth M, Gresack JE, Bangasser DA, Plona Z, Valentino RJ, Flandreau EI et al. Forebrain-specific CRF overproduction during development is sufficient to induce enduring anxiety and startle abnormalities in adult mice. Neuropsychopharmacology 2014; 39: 1409–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bale TL, Vale WW . CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004; 44: 525–557.

    CAS  PubMed  Google Scholar 

  4. McEwen BS . Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 2007; 87: 873–904.

    Article  PubMed  Google Scholar 

  5. Dallman MF . Modulation of stress responses: how we cope with excess glucocorticoids. Exp Neurol 2007; 206: 179–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vale W, Spiess J, Rivier C, Rivier J . Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213: 1394–1397.

    Article  CAS  PubMed  Google Scholar 

  7. Widmaier EP, Dallman MF . The effects of corticotropin-releasing factor on adrenocorticotropin secretion from perifused pituitaries in vitro: rapid inhibition by glucocorticoids. Endocrinology 1984; 115: 2368–2374.

    Article  CAS  PubMed  Google Scholar 

  8. Bao AM, Swaab DF . Corticotropin-releasing hormone and arginine vasopressin in depression focus on the human postmortem hypothalamus. Vitam Horm 2010; 82: 339–365.

    Article  CAS  PubMed  Google Scholar 

  9. Choleris E, Devidze N, Kavaliers M, Pfaff DW . Steroidal/neuropeptide interactions in hypothalamus and amygdala related to social anxiety. Prog Brain Res 2008; 170: 291–303.

    Article  CAS  PubMed  Google Scholar 

  10. Rodrigues SM, LeDoux JE, Sapolsky RM . The influence of stress hormones on fear circuitry. Annu Rev Neurosci 2009; 32: 289–313.

    Article  CAS  PubMed  Google Scholar 

  11. Arnett MG, Kolber BJ, Boyle MP, Muglia LJ . Behavioral insights from mouse models of forebrain—and amygdala-specific glucocorticoid receptor genetic disruption. Mol Cell Endocrinol 2011; 336: 2–5.

    Article  CAS  PubMed  Google Scholar 

  12. Finn DA, Rutledge-Gorman MT, Crabbe JC . Genetic animal models of anxiety. Neurogenetics 2003; 4: 109–135.

    PubMed  Google Scholar 

  13. Muglia L, Jacobson L, Dikkes P, Majzoub JA . Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 1995; 373: 427–432.

    Article  CAS  PubMed  Google Scholar 

  14. Weninger SC, Dunn AJ, Muglia LJ, Dikkes P, Miczek KA, Swiergiel AH et al. Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. Proc Natl Acad Sci USA 1999; 96: 8283–8288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dunn AJ, Swiergiel AH . Behavioral responses to stress are intact in CRF-deficient mice. Brain Res 1999; 845: 14–20.

    Article  CAS  PubMed  Google Scholar 

  16. van Gaalen MM, Stenzel-Poore MP, Holsboer F, Steckler T . Effects of transgenic overproduction of CRH on anxiety-like behaviour. Eur J Neurosci 2002; 15: 2007–2015.

    Article  PubMed  Google Scholar 

  17. Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998; 20: 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  18. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 1998; 19: 162–166.

    Article  CAS  PubMed  Google Scholar 

  19. Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nature Genet 2000; 24: 410–414.

    Article  CAS  PubMed  Google Scholar 

  20. Kita I, Seki Y, Nakatani Y, Fumoto M, Oguri M, Sato-Suzuki I et al. Corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus are involved in arousal/yawning response of rats. Behav Brain Res 2006; 169: 48–56.

    Article  CAS  PubMed  Google Scholar 

  21. Rodaros D, Caruana DA, Amir S, Stewart J . Corticotropin-releasing factor projections from limbic forebrain and paraventricular nucleus of the hypothalamus to the region of the ventral tegmental area. Neuroscience 2007; 150: 8–13.

    Article  CAS  PubMed  Google Scholar 

  22. Hsu DT, Price JL . Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Compar Neurol 2009; 512: 825–848.

    Article  Google Scholar 

  23. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 2005; 123: 493–505.

    Article  CAS  PubMed  Google Scholar 

  24. Fan CM, Kuwana E, Bulfone A, Fletcher CF, Copeland NG, Jenkins NA et al. Expression patterns of two murine homologs of Drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome. Mol Cell Neurosci 1996; 7: 1–16.

    Article  CAS  PubMed  Google Scholar 

  25. Liu P, Jenkins NA, Copeland NG . A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 2003; 13: 476–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vahl TP, Ulrich-Lai YM, Ostrander MM, Dolgas CM, Elfers EE, Seeley RJ et al. Comparative analysis of ACTH and corticosterone sampling methods in rats. Am J Physiol Endocrinol Metab 2005; 289: E823–E828.

    Article  CAS  PubMed  Google Scholar 

  27. Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE . Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 1997; 8: 711–713.

    Article  CAS  PubMed  Google Scholar 

  28. Solomon MB, Furay AR, Jones K, Packard AE, Packard BA, Wulsin AC et al. Deletion of forebrain glucocorticoid receptors impairs neuroendocrine stress responses and induces depression-like behavior in males but not females. Neuroscience 2012; 203: 135–143.

    Article  CAS  PubMed  Google Scholar 

  29. Marriott AS, Smith EF . An analysis of drug effects in mice exposed to a simple novel environment. Psychopharmacologia 1972; 24: 397–406.

    Article  CAS  PubMed  Google Scholar 

  30. Boissier JR, Simon P . [The exploration reaction in the mouse. Preliminary note]. Therapie 1962; 17: 1225–1232.

    CAS  PubMed  Google Scholar 

  31. Pellow S, Chopin P, File SE, Briley M . Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14: 149–167.

    Article  CAS  PubMed  Google Scholar 

  32. Crawley J, Goodwin FK . Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 1980; 13: 167–170.

    Article  CAS  PubMed  Google Scholar 

  33. Bevins RA, Besheer J, Palmatier MI, Jensen HC, Pickett KS, Eurek S . Novel-object place conditioning: behavioral and dopaminergic processes in expression of novelty reward. Behav Brain Res 2002; 129: 41–50.

    Article  CAS  PubMed  Google Scholar 

  34. Ennaceur A, Michalikova S, Bradford A, Ahmed S . Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks. Behav Brain Res 2005; 159: 247–266.

    Article  CAS  PubMed  Google Scholar 

  35. Silvers JM, Harrod SB, Mactutus CF, Booze RM . Automation of the novel object recognition task for use in adolescent rats. J Neurosci Methods 2007; 166: 99–103.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kutlu MG, Gould TJ . Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochem Pharmacol 2015; 97: 498–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang R, Jankord R, Flak JN, Solomon MB, D'Alessio DA, Herman JP . Role of glucocorticoids in tuning hindbrain stress integration. J Neurosci 2010; 30: 14907–14914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 2013; 341: 275–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paxinos G, Franklin K . The Mouse Brain. Elsevier: Amsterdam, Netherlands, 2012.

    Google Scholar 

  40. Huo L, Grill HJ, Bjorbaek C . Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes 2006; 55: 567–573.

    Article  CAS  PubMed  Google Scholar 

  41. Munzberg H, Flier JS, Bjorbaek C . Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 2004; 145: 4880–4889.

    Article  PubMed  Google Scholar 

  42. Rozen S, Skaletsky H . Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000; 132: 365–386.

    CAS  PubMed  Google Scholar 

  43. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    CAS  PubMed  Google Scholar 

  44. Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 2014; 507: 238–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Griebel G, Holsboer F . Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov 2012; 11: 462–478.

    Article  CAS  PubMed  Google Scholar 

  46. Oades RD, Isaacson RL . The development of food search behavior by rats: the effects of hippocampal damage and haloperidol. Behav Biol 1978; 24: 327–337.

    Article  CAS  PubMed  Google Scholar 

  47. Christmas AJ, Maxwell DR . A comparison of the effects of some benzodiazepines and other drugs on aggressive and exploratory behaviour in mice and rats. Neuropharmacology 1970; 9: 17–29.

    Article  CAS  PubMed  Google Scholar 

  48. Crawley J . What's Wrong With My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice, 2 edn. Wiley-Liss: New York, USA, 2007.

    Book  Google Scholar 

  49. Lakso M, Pichel JG, Gorman JR, Sauer B, Okamoto Y, Lee E et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci USA 1996; 93: 5860–5865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muglia LJ, Bae DS, Brown TT, Vogt SK, Alvarez JG, Sunday ME et al. Proliferation and differentiation defects during lung development in corticotropin-releasing hormone-deficient mice. Am J Respir Cell Mol Biol 1999; 20: 181–188.

    Article  CAS  PubMed  Google Scholar 

  51. Muglia LJ, Jacobson L, Weninger SC, Luedke CE, Bae DS, Jeong KH et al. Impaired diurnal adrenal rhythmicity restored by constant infusion of corticotropin-releasing hormone in corticotropin-releasing hormone-deficient mice. J Clin Invest 1997; 99: 2923–2929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jacobson L, Muglia LJ, Weninger SC, Pacak K, Majzoub JA . CRH deficiency impairs but does not block pituitary-adrenal responses to diverse stressors. Neuroendocrinology 2000; 71: 79–87.

    Article  CAS  PubMed  Google Scholar 

  53. Waters RP, Rivalan M, Bangasser DA, Deussing JM, Ising M, Wood SK et al. Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev 2015; 58: 63–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Greenman Y, Kuperman Y, Drori Y, Asa SL, Navon I, Forkosh O et al. Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior. Mol Endocrinol 2013; 27: 1091–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muglia LJ, Jenkins NA, Gilbert DJ, Copeland NG, Majzoub JA . Expression of the mouse corticotropin-releasing hormone gene in vivo and targeted inactivation in embryonic stem cells. J Clin Invest 1994; 93: 2066–2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Geerling JC, Shin JW, Chimenti PC, Loewy AD . Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol 2010; 518: 1460–1499.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cullinan WE, Herman JP, Watson SJ . Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 1993; 332: 1–20.

    Article  CAS  PubMed  Google Scholar 

  58. Dong HW, Petrovich GD, Watts AG, Swanson LW . Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol 2001; 436: 430–455.

    Article  CAS  PubMed  Google Scholar 

  59. Rinaman L . Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 2011; 300: R222–R235.

    Article  CAS  PubMed  Google Scholar 

  60. Ahima RS, Harlan RE . Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience 1990; 39: 579–604.

    Article  CAS  PubMed  Google Scholar 

  61. Fuxe K, Agnati LF . Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med Res Rev 1985; 5: 441–482.

    Article  CAS  PubMed  Google Scholar 

  62. Makino S, Gold PW, Schulkin J . Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus. Brain Res 1994; 640: 105–112.

    Article  CAS  PubMed  Google Scholar 

  63. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE . Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62: 617–627.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Smoller JW, Rosenbaum JF, Biederman J, Kennedy J, Dai D, Racette SR et al. Association of a genetic marker at the corticotropin-releasing hormone locus with behavioral inhibition. Biol Psychiatry 2003; 54: 1376–1381.

    Article  CAS  PubMed  Google Scholar 

  65. Liu Z, Zhu F, Wang G, Xiao Z, Wang H, Tang J et al. Association of corticotropin-releasing hormone receptor1 gene SNP and haplotype with major depression. Neurosci Lett 2006; 404: 358–362.

    Article  CAS  PubMed  Google Scholar 

  66. Polanczyk G, Caspi A, Williams B, Price TS, Danese A, Sugden K et al. Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension. Arch Gen Psychiatry 2009; 66: 978–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Licinio J, O'Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry 2004; 9: 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  68. Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L . Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord 2007; 104: 83–90.

    Article  CAS  PubMed  Google Scholar 

  69. Purba JS, Hoogendijk WJ, Hofman MA, Swaab DF . Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 1996; 53: 137–143.

    Article  CAS  PubMed  Google Scholar 

  70. Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M . Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 1988; 45: 577–579.

    Article  CAS  PubMed  Google Scholar 

  71. Arato M, Banki CM, Bissette G, Nemeroff CB . Elevated CSF CRF in suicide victims. Biol Psychiatry 1989; 25: 355–359.

    Article  CAS  PubMed  Google Scholar 

  72. Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T . A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry 2008; 165: 617–620.

    Article  PubMed  Google Scholar 

  73. Coric V, Feldman HH, Oren DA, Shekhar A, Pultz J, Dockens RC et al. Multicenter, randomized, double-blind, active comparator and placebo-controlled trial of a corticotropin-releasing factor receptor-1 antagonist in generalized anxiety disorder. Depress Anxiety 2010; 27: 417–425.

    Article  CAS  PubMed  Google Scholar 

  74. Kirchhoff VD, Nguyen HT, Soczynska JK, Woldeyohannes H, McIntyre RS . Discontinued psychiatric drugs in 2008. Expert Opin Investig Drugs 2009; 18: 1431–1443.

    Article  CAS  PubMed  Google Scholar 

  75. Zobel AW, Nickel T, Kunzel HE, Ackl N, Sonntag A, Ising M et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 2000; 34: 171–181.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Clifford B Saper and Nick Andrews for their helpful discussion. We acknowledge the BCH Neurodevelopmental Behavior Core (IDDRC, P30 HD 18655) and the Rodent Histopathology Core labaratory, Harvard Medical School for their technical support. We thank Dr Bradford Lowell for the kind gift of Crh-ires-Cre mice. This study was supported by National Institutes of Health Grants 5K01MH096148-03 (to RZ), T32DK007699-30 (to JAM) and NNSFC 31271095 (to RZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Zhang or J A Majzoub.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Asai, M., Mahoney, C. et al. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice. Mol Psychiatry 22, 733–744 (2017). https://doi.org/10.1038/mp.2016.136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.136

This article is cited by

Search

Quick links