Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

The neurobiology of D-amino acid oxidase and its involvement in schizophrenia

Abstract

D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes certain D-amino acids, notably the endogenous N-methyl D-aspartate receptor (NMDAR) co-agonist, D-serine. As such, it has the potential to modulate the function of NMDAR and to contribute to the widely hypothesized involvement of NMDAR signalling in schizophrenia. Three lines of evidence now provide support for this possibility: DAO shows genetic associations with the disorder in several, although not all, studies; the expression and activity of DAO are increased in schizophrenia; and DAO inactivation in rodents produces behavioural and biochemical effects, suggestive of potential therapeutic benefits. However, several key issues remain unclear. These include the regional, cellular and subcellular localization of DAO, the physiological importance of DAO and its substrates other than D-serine, as well as the causes and consequences of elevated DAO in schizophrenia. Herein, we critically review the neurobiology of DAO, its involvement in schizophrenia, and the therapeutic value of DAO inhibition. This review also highlights issues that have a broader relevance beyond DAO itself: how should we weigh up convergent and cumulatively impressive, but individually inconclusive, pieces of evidence regarding the role that a given gene may have in the aetiology, pathophysiology and pharmacotherapy of schizophrenia?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Krebs HA . Metabolism of amino-acids: deamination of amino-acids. Biochem J 1935; 29: 1620–1644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yagi K, Nagatsu T, Ozawa T . Inhibitory action of chlorpromazine on the oxidation of d-amino-acid in the diencephalon part of the brain. Nature 1956; 177: 891–892.

    Article  CAS  PubMed  Google Scholar 

  3. Neims AH, Zieverink WD, Smilack JD . Distribution of D-amino acid oxidase in bovine and human nervous tissues. J Neurochem 1966; 13: 163–168.

    Article  CAS  PubMed  Google Scholar 

  4. Momoi K, Fukui K, Watanabe F, Miyake Y . Molecular cloning and sequence analysis of cDNA encoding human kidney D-amino acid oxidase. FEBS Lett 1988; 238: 180–184.

    Article  CAS  PubMed  Google Scholar 

  5. Sasaki M, Konno R, Nishio M, Niwa A, Yasumura Y, Enami J . A single-base-pair substitution abolishes D-amino-acid oxidase activity in the mouse. Biochim Biophys Acta 1992; 1139: 315–318.

    Article  CAS  PubMed  Google Scholar 

  6. Horiike K, Tojo H, Arai R, Nozaki M, Maeda T . D-amino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differentiation of astrocytes. Brain Res 1994; 652: 297–303.

    Article  CAS  PubMed  Google Scholar 

  7. Moreno S, Nardacci R, Cimini A, Ceru MP . Immunocytochemical localization of D-amino acid oxidase in rat brain. J Neurocytol 1999; 28: 169–185.

    Article  CAS  PubMed  Google Scholar 

  8. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maekawa M, Watanabe M, Yamaguchi S, Konno R, Hori Y . Spatial learning and long-term potentiation of mutant mice lacking D-amino-acid oxidase. Neurosci Res 2005; 53: 34–38.

    Article  CAS  PubMed  Google Scholar 

  10. Adage T, Trillat AC, Quattropani A, Perrin D, Cavarec L, Shaw J et al. In vitro and in vivo pharmacological profile of AS057278, a selective d-amino acid oxidase inhibitor with potential anti-psychotic properties. Eur Neuropsychopharmacol 2008; 18: 200–214.

    Article  CAS  PubMed  Google Scholar 

  11. Burnet PW, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M et al. D-amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry 2008; 13: 658–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R . Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 2008; 101: 76–83.

    Article  PubMed  Google Scholar 

  13. Fukui K, Miyake Y . Molecular cloning and chromosomal localization of a human gene encoding D-amino-acid oxidase. J Biol Chem 1992; 267: 18631–18638.

    CAS  PubMed  Google Scholar 

  14. Tada M, Fukui K, Momoi K, Miyake Y . Cloning and expression of a cDNA encoding mouse kidney D-amino acid oxidase. Gene 1990; 90: 293–297.

    Article  CAS  PubMed  Google Scholar 

  15. Konno R . Rat D-amino-acid oxidase cDNA: rat D-amino-acid oxidase as an intermediate form between mouse and other mammalian D-amino-acid oxidases. Biochim Biophys Acta 1998; 1395: 165–170.

    Article  CAS  PubMed  Google Scholar 

  16. Gavazzi E, Malgaretti N, Curti B . Immunochemical properties of D-amino-acid oxidase. Biochim Biophys Acta 1987; 915: 188–198.

    Article  CAS  PubMed  Google Scholar 

  17. Almond SL, Fradley RL, Armstrong EJ, Heavens RB, Rutter AR, Newman RJ et al. Behavioral and biochemical characterization of a mutant mouse strain lacking D-amino acid oxidase activity and its implications for schizophrenia. Mol Cell Neurosci 2006; 32: 324–334.

    Article  CAS  PubMed  Google Scholar 

  18. Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H et al. A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res 2007; 90: 41–51.

    Article  PubMed  Google Scholar 

  19. Verrall L, Walker M, Rawlings N, Benzel I, Kew JN, Harrison PJ et al. d-amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 2007; 26: 1657–1669.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sacchi S, Bernasconi M, Martineau M, Mothet JP, Ruzzene M, Pilone MS et al. pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 2008; 283: 22244–22256.

    Article  CAS  PubMed  Google Scholar 

  21. Kapoor R, Lim KS, Cheng A, Garrick T, Kapoor V . Preliminary evidence for a link between schizophrenia and NMDA-glycine site receptor ligand metabolic enzymes, d-amino acid oxidase (DAAO) and kynurenine aminotransferase-1 (KAT-1). Brain Res 2006; 1106: 205–210.

    Article  CAS  PubMed  Google Scholar 

  22. Momoi K, Fukui K, Tada M, Miyake Y . Gene expression of D-amino acid oxidase in rabbit kidney. J Biochem 1990; 108: 406–413.

    Article  CAS  PubMed  Google Scholar 

  23. Fukui K, Watanabe F, Shibata T, Miyake Y . Molecular cloning and sequence analysis of cDNAs encoding porcine kidney D-amino acid oxidase. Biochemistry 1987; 26: 3612–3618.

    Article  CAS  PubMed  Google Scholar 

  24. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 2002; 99: 16899–16903.

    Article  PubMed  Google Scholar 

  25. Katagiri M, Tojo H, Horiike K, Yamano T . Immunochemical relationship of D-amino acid oxidases in various tissues and animals. Comp Biochem Physiol B 1991; 99: 345–350.

    Article  CAS  PubMed  Google Scholar 

  26. Barker RF, Hopkinson DA . The genetic and biochemical properties of the D-amino acid oxidases in human tissues. Ann Hum Genet 1977; 41: 27–42.

    Article  CAS  PubMed  Google Scholar 

  27. Schrader T, Andreesen JR . Evidence for the functional importance of Cys298 in D-amino acid oxidase from Trigonopsis variabilis. Eur J Biochem 1993; 218: 735–744.

    Article  CAS  PubMed  Google Scholar 

  28. Pilone MS . D-amino acid oxidase: new findings. Cell Mol Life Sci 2000; 57: 1732–1747.

    Article  CAS  PubMed  Google Scholar 

  29. Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G . Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 2007; 64: 1373–1394.

    Article  CAS  PubMed  Google Scholar 

  30. Caldinelli L, Molla G, Sacchi S, Pilone MS, Pollegioni L . Relevance of weak flavin binding in human D-amino acid oxidase. Protein Sci 2009; 18: 801–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Polegioni L . Characterization of human D-amino acid oxidase. FEBS Lett 2006; 580: 2358–2364.

    Article  CAS  PubMed  Google Scholar 

  32. Kawazoe T, Tsuge H, Imagawa T, Aki K, Kuramitsu S, Fukui K . Structural basis of D-DOPA oxidation by D-amino acid oxidase: alternative pathway for dopamine biosynthesis. Biochem Biophys Res Commun 2007; 355: 385–391.

    Article  CAS  PubMed  Google Scholar 

  33. Arnold G, Liscum L, Holtzman E . Ultrastructural localization of D-amino acid oxidase in microperoxisomes of the rat nervous system. J Histochem Cytochem 1979; 27: 735–745.

    Article  CAS  PubMed  Google Scholar 

  34. Fisher GH, D'Aniello A, Vetere A, Padula L, Cusano GP, Man EH . Free D-aspartate and D-alanine in normal and Alzheimer brain. Brain Res Bull 1991; 26: 983–985.

    Article  CAS  PubMed  Google Scholar 

  35. Nagata Y, Yamamoto K, Shimojo T, Konno R, Yasumura Y, Akino T . The presence of free D-alanine, D-proline and D-serine in mice. Biochim Biophys Acta 1992; 1115: 208–211.

    Article  CAS  PubMed  Google Scholar 

  36. Hashimoto A, Nishikawa T, Oka T, Takahashi K . Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem 1993; 60: 783–786.

    Article  CAS  PubMed  Google Scholar 

  37. Hashimoto A, Kumashiro S, Nishikawa T, Oka T, Takahashi K, Mito T et al. Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex. J Neurochem 1993; 61: 348–351.

    Article  CAS  PubMed  Google Scholar 

  38. Hashimoto A, Nishikawa T, Konno R, Niwa A, Yasumura Y, Oka T et al. Free D-serine, D-aspartate and D-alanine in central nervous system and serum in mutant mice lacking D-amino acid oxidase. Neurosci Lett 1993; 152: 33–36.

    Article  CAS  PubMed  Google Scholar 

  39. Nagata Y, Konno R, Niwa A . Amino acid levels in D-alanine-administered mutant mice lacking D-amino acid oxidase. Metabolism 1994; 43: 1153–1157.

    Article  CAS  PubMed  Google Scholar 

  40. Nagata Y, Horiike K, Maeda T . Distribution of free D-serine in vertebrate brains. Brain Res 1994; 634: 291–295.

    Article  CAS  PubMed  Google Scholar 

  41. Kumashiro S, Hashimoto A, Nishikawa T . Free D-serine in post-mortem brains and spinal cords of individuals with and without neuropsychiatric diseases. Brain Res 1995; 681: 117–125.

    Article  CAS  PubMed  Google Scholar 

  42. Nagata Y, Borghi M, Fisher GH, D'Aniello A . Free D-serine concentration in normal and Alzheimer human brain. Brain Res Bull 1995; 38: 181–183.

    Article  CAS  PubMed  Google Scholar 

  43. Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, Imai K . Regional distribution and postnatal changes of D-amino acids in rat brain. Biochim Biophys Acta 1997; 1334: 214–222.

    Article  CAS  PubMed  Google Scholar 

  44. Nagata Y, Uehara T, Kitamura Y, Nomura Y, Horiike K . D-serine content and D-[3H]serine binding in the brain regions of the senescence-accelerated mouse. Mech Ageing Dev 1998; 104: 115–124.

    Article  CAS  PubMed  Google Scholar 

  45. Inoue T, Hamase K, Morikawa A, Zaitsu K . Determination of minute amounts of D-leucine in various brain regions of rat and mouse using column-switching high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 2000; 744: 213–219.

    Article  CAS  PubMed  Google Scholar 

  46. Hamase K, Inoue T, Morikawa A, Konno R, Zaitsu K . Determination of free D-proline and D-leucine in the brains of mutant mice lacking D-amino acid oxidase activity. Anal Biochem 2001; 298: 253–258.

    Article  CAS  PubMed  Google Scholar 

  47. Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K . Determination of free D-aspartic acid, D-serine and D-alanine in the brain of mutant mice lacking D-amino acid oxidase activity. J Chromatogr B Biomed Sci Appl 2001; 757: 119–125.

    Article  CAS  PubMed  Google Scholar 

  48. Morikawa A, Hamase K, Zaitsu K . Determination of D-alanine in the rat central nervous system and periphery using column-switching high-performance liquid chromatography. Anal Biochem 2003; 312: 66–72.

    Article  CAS  PubMed  Google Scholar 

  49. Wang LZ, Zhu XZ . Spatiotemporal relationships among D-serine, serine racemase, and D-amino acid oxidase during mouse postnatal development. Acta Pharmacol Sin 2003; 24: 965–974.

    CAS  PubMed  Google Scholar 

  50. Hamase K, Konno R, Morikawa A, Zaitsu K . Sensitive determination of D-amino acids in mammals and the effect of D-amino-acid oxidase activity on their amounts. Biol Pharm Bull 2005; 28: 1578–1584.

    Article  CAS  PubMed  Google Scholar 

  51. Hashimoto K, Sawa A, Iyo M . Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 2007; 62: 1310–1316.

    CAS  PubMed  Google Scholar 

  52. Song Y, Feng Y, Lu X, Zhao S, Liu CW, Liu YM . D-amino acids in rat brain measured by liquid chromatography/tandem mass spectrometry. Neurosci Lett 2008; 445: 53–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Labrie V, Clapcote SJ, Roder JC . Mutant mice with reduced NMDA-NR1 glycine affinity or lack of D-amino acid oxidase function exhibit altered anxiety-like behaviors. Pharmacol Biochem Behav 2009; 91: 610–620.

    Article  CAS  PubMed  Google Scholar 

  54. Miyoshi Y, Hamase K, Tojo Y, Mita M, Konno R, Zaitsu K . Determination of D-serine and D-alanine in the tissues and physiological fluids of mice with various D-amineo-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection. J Chromatog B 2009; 877: 2506–2512.

    Article  CAS  Google Scholar 

  55. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady Jr RO, Ferris CD et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci USA 1999; 96: 721–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wolosker H, Blackshaw S, Snyder SH . Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96: 13409–13414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hashimoto A, Chiba S . Effect of systemic administration of D-serine on the levels of D- and L-serine in several brain areas and periphery of rat. Eur J Pharmacol 2004; 495: 153–158.

    Article  CAS  PubMed  Google Scholar 

  58. Dunlop DS, Neidle A . The origin and turnover of D-serine in brain. Biochem Biophys Res Commun 1997; 235: 26–30.

    Article  CAS  PubMed  Google Scholar 

  59. Hamase K, Nagayasu R, Morikawa A, Konno R, Zaitsu K . Sensitive high-performance liquid chromatographic assay for D-amino-acid oxidase activity in mammalian tissues using a fluorescent non-natural substrate, 5-fluoro-D-tryptophan. J Chromatogr A 2006; 1106: 159–164.

    Article  CAS  PubMed  Google Scholar 

  60. Wolosker H, Dumin E, Balan L, Foltyn VN . D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration. FEBS J 2008; 275: 3514–3526.

    Article  CAS  PubMed  Google Scholar 

  61. Konno R, Yasumura Y . Mouse mutant deficient in D-amino acid oxidase activity. Genetics 1983; 103: 277–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Duplantier AJ, Becker SL, Bohanon MJ, Borzilleri KA, Chrunyk BA, Downs JT et al. Discovery, SAR, and pharmacokinetics of a novel 3-hydroxyquinolin-2(1H)-one series of potent d-amino acid oxidase (DAAO) inhibitors. J Med Chem 2009; 52: 3576–3585.

    Article  CAS  PubMed  Google Scholar 

  63. Bauer D, Hamacher K, Broer S, Pauleit D, Palm C, Zilles K et al. Preferred stereoselective brain uptake of d-serine–a modulator of glutamatergic neurotransmission. Nucl Med Biol 200; 32: 793–797.

    Article  CAS  Google Scholar 

  64. Langen KJ, Hamacher K, Bauer D, Broer S, Pauleit D, Herzog H et al. Preferred stereoselective transport of the D-isomer of cis-4-[F-18]fluoro-proline at the blood-brain barrier. J Cereb Blood Flow Metab 2005; 25: 607–616.

    Article  CAS  PubMed  Google Scholar 

  65. Kleckner NW, Dingledine R . Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 1988; 241: 835–837.

    Article  CAS  PubMed  Google Scholar 

  66. McBain CJ, Kleckner NW, Wyrick S, Dingledine R . Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol 1989; 36: 556–565.

    CAS  PubMed  Google Scholar 

  67. Sakata K, Fukushima T, Minje L, Ogurusu T, Taira H, Mishina M et al. Modulation by L- and D-isoforms of amino acids of the L-glutamate response of N-methyl-D-aspartate receptors. Biochemistry 1999; 38: 10099–10106.

    Article  CAS  PubMed  Google Scholar 

  68. Schell MJ, Molliver ME, Snyder SH . D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 1995; 92: 3948–3952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schell MJ, Brady Jr RO, Molliver ME, Snyder SH . D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 1997; 17: 1604–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mothet JP, Parent AT, Wolosker H, Brady Jr RO, Linden DJ, Ferris CD et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000; 97: 4926–4931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Snyder SH, Ferris CD . Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry 2000; 157: 1738–1751.

    Article  CAS  PubMed  Google Scholar 

  72. Snyder SH, Kim PM . D-amino acids as putative neurotransmitters: focus on D-serine. Neurochem Res 2000; 25: 553–560.

    Article  CAS  PubMed  Google Scholar 

  73. Wolosker H, Panizzutti R, De Miranda J . Neurobiology through the looking-glass: D-serine as a new glial-derived transmitter. Neurochem Int 2002; 41: 327–332.

    Article  CAS  PubMed  Google Scholar 

  74. Miller RF . D-serine as a glial modulator of nerve cells. Glia 2004; 47: 275–283.

    Article  PubMed  Google Scholar 

  75. Schell MJ . The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2004; 359: 943–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martineau M, Baux G, Mothet JP . D-serine signalling in the brain: friend and foe. Trends Neurosci 2006; 29: 481–491.

    Article  CAS  PubMed  Google Scholar 

  77. Wolosker H . D-serine regulation of NMDA receptor activity. Sci STKE 2006; 356: pe41.

    Google Scholar 

  78. Oliet SH, Mothet JP . Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience 2009; 158: 275–283.

    Article  CAS  PubMed  Google Scholar 

  79. Wood PL, Emmett MR, Rao TS, Mick S, Cler J, Iyengar S . In vivo modulation of the N-methyl-D-aspartate receptor complex by D-serine: potentiation of ongoing neuronal activity as evidenced by increased cerebellar cyclic GMP. J Neurochem 1989; 53: 979–981.

    Article  CAS  PubMed  Google Scholar 

  80. Rao TS, Cler JA, Emmett MR, Mick SJ, Iyengar S, Wood PL . Glycine, glycinamide and D-serine act as positive modulators of signal transduction at the N-methyl-D-aspartate (NMDA) receptor in vivo: differential effects on mouse cerebellar cyclic guanosine monophosphate levels. Neuropharmacology 1990; 29: 1075–1080.

    Article  CAS  PubMed  Google Scholar 

  81. Ito K, Hicks TP . Effect of the glycine modulatory site of the N-methyl-D-aspartate receptor on synaptic responses in kitten visual cortex. Neurosci Lett 2001; 303: 95–98.

    Article  CAS  PubMed  Google Scholar 

  82. Chen L, Muhlhauser M, Yang CR . Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 2003; 89: 691–703.

    Article  CAS  PubMed  Google Scholar 

  83. Martina M, Krasteniakov NV, Bergeron R . D-serine differently modulates NMDA receptor function in rat CA1 hippocampal pyramidal cells and interneurons. J Physiol 2003; 548: 411–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Krasteniakov NV, Martina M, Bergeron R . Role of the glycine site of the N-methyl-D-aspartate receptor in synaptic plasticity induced by pairing. Eur J Neurosci 2005; 21: 2782–2792.

    Article  CAS  PubMed  Google Scholar 

  85. Shleper M, Kartvelishvily E, Wolosker H . D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci 2005; 25: 9413–9417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Junjaud G, Rouaud E, Turpin F, Mothet JP, Billard JM . Age-related effects of the neuromodulator D-serine on neurotransmission and synaptic potentiation in the CA1 hippocampal area of the rat. J Neurochem 2006; 98: 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  87. Li YH, Han TZ . Glycine binding sites of presynaptic NMDA receptors may tonically regulate glutamate release in the rat visual cortex. J Neurophysiol 2007; 97: 817–823.

    Article  CAS  PubMed  Google Scholar 

  88. Tanii Y, Nishikawa T, Hashimoto A, Takahashi K . Stereoselective antagonism by enantiomers of alanine and serine of phencyclidine-induced hyperactivity, stereotypy and ataxia in the rat. J Pharmacol Exp Therap 1994; 269: 1040–1048.

    CAS  Google Scholar 

  89. Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR et al. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 2003; 100: 6789–6794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Katsuki H, Nonaka M, Shirakawa H, Kume T, Akaike A . Endogenous D-serine is involved in induction of neuronal death by N-methyl-D-aspartate and simulated ischemia in rat cerebrocortical slices. J Pharmacol Exp Ther 2004; 311: 836–844.

    Article  CAS  PubMed  Google Scholar 

  91. Yang S, Qiao H, Wen L, Zhou W, Zhang Y . D-serine enhances impaired long-term potentiation in CA1 subfield of hippocampal slices from aged senescence-accelerated mouse. Neurosci Lett 2005; 379: 7–12.

    Article  CAS  PubMed  Google Scholar 

  92. Hama Y, Katsuki H, Tochikawa Y, Suminaka C, Kume T, Akaike A . Contribution of endogenous glycine site NMDA agonists to excitotoxic retinal damage in vivo. Neurosci Res 2006; 56: 279–285.

    Article  CAS  PubMed  Google Scholar 

  93. Ren WH, Guo JD, Cao H, Wang H, Wang PF, Sha H et al. Is endogenous D-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect? J Neurochem 2006; 96: 1636–1647.

    Article  CAS  PubMed  Google Scholar 

  94. Gustafson EC, Stevens ER, Wolosker H, Miller RF . Endogenous D-serine contributes to NMDA-receptor-mediated light-evoked responses in the vertebrate retina. J Neurophysiol 2007; 98: 122–130.

    Article  CAS  PubMed  Google Scholar 

  95. Fernandez-Espejo E, Ramiro-Fuentes S, Portavella M, Moreno-Paublete R . Role for D-serine within the ventral tegmental area in the development of cocaine's sensitization. Neuropsychopharmacology 2008; 33: 995–1003.

    Article  CAS  PubMed  Google Scholar 

  96. Gong XQ, Zabek RL, Bai D . D-serine inhibits AMPA receptor-mediated current in rat hippocampal neurons. Can J Physiol Pharmacol 2007; 85: 546–555.

    Article  CAS  PubMed  Google Scholar 

  97. Hansen KB, Naur P, Kurtkaya NL, Kristensen AS, Gajhede M, Kastrup JS et al. Modulation of the dimer interface at ionotropic glutamate-like receptor δ2 by D-serine and extracellular calcium. J Neurosci 2009; 29: 907–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 2002; 415: 793–798.

    Article  CAS  PubMed  Google Scholar 

  99. Takarada T, Takahata Y, Iemata M, Hinoi E, Uno K, Hirai T et al. Interference with cellular differentiation by D-serine through antagonism at N-methyl-D-aspartate receptors composed of NR1 and NR3A subunits in chondrocytes. J Cell Physiol 2009; 220: 756–764.

    Article  CAS  PubMed  Google Scholar 

  100. Fatima Shad K . Effect of D-serine on the serotonin receptors of human platelets. Exp Brain Res 2006; 173: 353–356.

    Article  CAS  PubMed  Google Scholar 

  101. Hamasu K, Shigemi K, Tsuneyoshi Y, Yamane H, Sato H, Denbow DM et al. Intracerebroventricular injection of L-proline and D-proline induces sedative and hypnotic effects by different mechanisms under an acute stressful condition in chicks. Amino Acids 2008 (e-pub ahead of print, 21 Nov).

  102. Banks WA, Kastin AJ . Leucine modulates peptide transport system-1 across the blood-brain barrier at the stereospecific site within the central nervous system. J Pharm Pharmacol 1991; 43: 252–254.

    Article  CAS  PubMed  Google Scholar 

  103. Weimar WR, Neims AH . The development of D-amino acid oxidase in rat cerebellum. J Neurochem 1977; 29: 649–656.

    Article  CAS  PubMed  Google Scholar 

  104. Horiike K, Tojo H, Arai R, Yamano T, Nozaki M, Maeda T . Localization of D-amino-acid oxidase in Bergmann glial-cells and astrocytes of rat cerebellum. Brain Res Bull 1987; 19: 587–596.

    Article  CAS  PubMed  Google Scholar 

  105. Sato E, Kurokawa T, Oda N, Ishibashi S . Early appearance of abnormality of microperoxisomal enzymes in the cerebral cortex of senescence-accelerated mouse. Mech Ageing Dev 1996; 92: 175–184.

    Article  CAS  PubMed  Google Scholar 

  106. Yoshikawa M, Oka T, Kawaguchi M, Hashimoto A . MK-801 upregulates the expression of d-amino acid oxidase mRNA in rat brain. Brain Res Mol Brain Res 2004; 131: 141–144.

    Article  CAS  PubMed  Google Scholar 

  107. Yoshikawa M, Andoh H, Ito K, Suzuki T, Kawaguchi M, Kobayashi H et al. Acute treatment with morphine augments the expression of serine racemase and D-amino acid oxidase mRNAs in rat brain. Eur J Pharmacol 2005; 525: 94–97.

    Article  CAS  PubMed  Google Scholar 

  108. Takeyama K, Yoshikawa M, Oka T, Kawaguchi M, Suzuki T, Hashimoto A . Ketamine enhances the expression of serine racemase and D-amino acid oxidase mRNAs in rat brain. Eur J Pharmacol 2006; 540: 82–86.

    Article  CAS  PubMed  Google Scholar 

  109. Hashimoto A, Yoshikawa M, Andoh H, Yano H, Matsumoto H, Kawaguchi M et al. Effects of MK-801 on the expression of serine racemase and d-amino acid oxidase mRNAs and on the D-serine levels in rat brain. Eur J Pharmacol 2007; 555: 17–22.

    Article  CAS  PubMed  Google Scholar 

  110. Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M et al. Serine racemase modulates intracellular D-serine levels through an alpha,beta-elimination activity. J Biol Chem 2005; 280: 1754–1763.

    Article  CAS  PubMed  Google Scholar 

  111. Strisovsky K, Jiraskova J, Mikulova A, Rulisek L, Konvalinka J . Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activity. Biochemistry 2005; 44: 13091–13100.

    Article  CAS  PubMed  Google Scholar 

  112. Rutter AR, Fradley RL, Garrett EM, Chapman KL, Lawrence JM, Rosahl TW et al. Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating d-serine reuptake in the mouse CNS. Eur J Neurosci 2007; 25: 1757–1766.

    Article  PubMed  Google Scholar 

  113. Helboe L, Egebjerg J, Moller M, Thomsen C . Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. Eur J Neurosci 2003; 18: 2227–2238.

    Article  PubMed  Google Scholar 

  114. Matsuo H, Kanai Y, Tokunaga M, Nakata T, Chairoungdua A, Ishimine H et al. High affinity D- and L-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neurosci Lett 2004; 358: 123–126.

    Article  CAS  PubMed  Google Scholar 

  115. Shao Z, Kamboj A, Anderson CM . Functional and immunocytochemical characterization of D-serine transporters in cortical neuron and astrocyte cultures. J Neurosci Res 2009; 87: 2520–2530.

    Article  CAS  PubMed  Google Scholar 

  116. Ribeiro CS, Reis M, Panizzutti R, de Miranda J, Wolosker H . Glial transport of the neuromodulator D-serine. Brain Res 2002; 929: 202–209.

    Article  CAS  PubMed  Google Scholar 

  117. O'Brien KB, Miller RF, Bowser MT . D-serine uptake by isolated retinas is consistent with ASCT-mediated transport. Neurosci Lett 2005; 385: 58–63.

    Article  CAS  PubMed  Google Scholar 

  118. Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, Smith SB . Functional and molecular analysis of D-serine transport in retinal Muller cells. Exp Eye Res 2007; 84: 191–199.

    Article  CAS  PubMed  Google Scholar 

  119. Dolinska M, Zablocka B, Sonnewald U, Albrecht J . Glutamine uptake and expression of mRNA's of glutamine transporting proteins in mouse cerebellar and cerebral cortical astrocytes and neurons. Neurochem Int 2004; 44: 75–81.

    Article  CAS  PubMed  Google Scholar 

  120. Gliddon CM, Shao Z, LeMaistre JL, Anderson CM . Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J Neurochem 2009; 108: 372–383.

    Article  CAS  PubMed  Google Scholar 

  121. Kitano R, Morimoto S . Isolation of peroxisomes from the dog kidney cortex. Biochim Biophys Acta 1975; 411: 113–120.

    Article  CAS  PubMed  Google Scholar 

  122. Veenhuis M, Bonga SD . The cytochemical demonstration of catalase and D-amino acid oxidase in the microbodies of teleost kidney cells. Histochem J 1977; 9: 171–181.

    Article  CAS  PubMed  Google Scholar 

  123. Usuda N, Yokota S, Hashimoto T, Nagata T . Immunocytochemical localization of D-amino acid oxidase in the central clear matrix of rat kidney peroxisomes. J Histochem Cytochem 1986; 34: 1709–1718.

    Article  CAS  PubMed  Google Scholar 

  124. Perotti ME, Gavazzi E, Trussardo L, Malgaretti N, Curti B . Immunoelectron microscopic localization of D-amino acid oxidase in rat kidney and liver. Histochem J 1987; 19: 157–169.

    Article  CAS  PubMed  Google Scholar 

  125. Caldinelli L, Iametti S, Barbiroli A, Bonomi F, Piubelli L, Ferranti P et al. Unfolding intermediate in the peroxisomal flavoprotein D-amino acid oxidase. J Biol Chem 2004; 279: 28426–28434.

    Article  CAS  PubMed  Google Scholar 

  126. Park HK, Shishido Y, Ichise-Shishido S, Kawazoe T, Ono K, Iwana S et al. Potential role for astroglial D-amino acid oxidase in extracellular D-serine metabolism and cytotoxicity. J Biochem 2006; 139: 295–304.

    Article  CAS  PubMed  Google Scholar 

  127. Pollegioni L, Ceciliani F, Curti B, Ronchi S, Pilone MS . Studies on the structural and functional aspects of Rhodotorula gracilis D-amino acid oxidase by limited trypsinolysis. Biochem J 1995; 310: 577–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Campaner S, Pollegioni L, Ross BD, Pilone MS . Limited proteolysis and site-directed mutagenesis reveal the origin of microheterogeneity in Rhodotorula gracilis D-amino acid oxidase. Biochem J 1998; 330: 615–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tarelli GT, Vanoni MA, Negri A, Curti B . Characterization of a fully active N-terminal 37-kDa polypeptide obtained by limited tryptic cleavage of pig kidney D-amino acid oxidase. J Biol Chem 1990; 264: 21242–21246.

    Google Scholar 

  130. Yurimoto H, Hasegawa T, Sakai Y, Kato N . Physiological role of the D-amino acid oxidase gene, DAO1, in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii. Yeast 2000; 16: 1217–1227.

    Article  CAS  PubMed  Google Scholar 

  131. Gaunt GL, de Duve C . Subcellular distribution of D-amino acid oxidase and catalase in rat brain. J Neurochem 1976; 26: 749–759.

    Article  CAS  PubMed  Google Scholar 

  132. Robinson JM, Briggs RT, Karnovsky MJ . Localization of D-amino acid oxidase on the cell surface of human polymorphonuclear leukocytes. J Cell Biol 1978; 77: 59–71.

    Article  CAS  PubMed  Google Scholar 

  133. Tsuchida H, Yamamoto N, Kajii Y, Umino A, Fukui K, Nishikawa T . Cloning of a D-serine-regulated transcript dsr-1 from the rat cerebral cortex. Biochem Biophys Res Commun 2001; 280: 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  134. Shimazu D, Yamamoto N, Umino A, Ishii S, Sakurai S, Nishikawa T . Inhibition of D-serine accumulation in the Xenopus oocyte by expression of the rat ortholog of human 3′-phosphoadenosine 5′-phosphosulfate transporter gene isolated from the neocortex as D-serine modulator-1. J Neurochem 2006; 96: 30–42.

    Article  CAS  PubMed  Google Scholar 

  135. Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H . Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 2006; 281: 14151–14162.

    Article  CAS  PubMed  Google Scholar 

  136. Yoshikawa M, Takayasu N, Hashimoto A, Sato Y, Tamaki R, Tsukamoto H et al. The serine racemase mRNA is predominantly expressed in rat brain neurons. Arch Histol Cytol 2007; 70: 127–134.

    Article  CAS  PubMed  Google Scholar 

  137. Balan L, Foltyn VN, Zehl M, Dumin E, Dikopoltsev E, Knoh D et al. Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proc Natl Acad Sci USA 2009; 106: 7589–7594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mustafa AK, van Rossum DB, Patterson RL, Maag D, Ehmsen JT, Gazi SK et al. Glutamatergic regulation of serine racemase via reversal of PIP2 inhibition. Proc Natl Acad Sci USA 2009; 106: 2921–2926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  140. Olney JW, Farber NB . Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  141. Coyle JT, Tsai G, Goff D . Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann NY Acad Sci 2003; 1003: 318–327.

    Article  CAS  PubMed  Google Scholar 

  142. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  PubMed  Google Scholar 

  143. Krystal JH, D'Souza DC, Mathalon D, Perry E, Belger A, Hoffman R . NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 2003; 169: 215–233.

    Article  CAS  Google Scholar 

  144. Moghaddam B . Bringing order to the glutamate chaos in schizophrenia. Neuron 2003; 40: 881–884.

    Article  CAS  PubMed  Google Scholar 

  145. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  PubMed  Google Scholar 

  146. Coyle JT . Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 2006; 26: 365–384.

    Article  CAS  PubMed  Google Scholar 

  147. Javitt DC . Glutamate and schizophrenia: phencyclidine, N-methyl-d-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 2007; 78: 69–108.

    Article  CAS  PubMed  Google Scholar 

  148. Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH . NMDA receptors and schizophrenia. Curr Opin Pharmacol 2007; 7: 48–55.

    Article  CAS  PubMed  Google Scholar 

  149. Stone JM, Morrison PD, Pilowsky LS . Glutamate and dopamine dysregulation in schizophrenia–a synthesis and selective review. J Psychopharmacol 2007; 21: 440–452.

    Article  CAS  PubMed  Google Scholar 

  150. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003; 60: 572–576.

    Article  CAS  PubMed  Google Scholar 

  151. Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindstrom LH, Iyo M . Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 767–769.

    Article  CAS  PubMed  Google Scholar 

  152. Yamada K, Ohnishi T, Hashimoto K, Ohba H, Iwayama-Shigeno Y, Toyoshima M et al. Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and D-serine levels. Biol Psychiatry 2005; 57: 1493–1503.

    Article  CAS  PubMed  Google Scholar 

  153. Coyle JT, Tsai G, Goff DC . Ionotropic glutamate receptors as therapeutic targets in schizophrenia. Curr Drug Targets CNS Neurol Disord 2002; 1: 183–189.

    Article  CAS  PubMed  Google Scholar 

  154. Javitt DC . Is the glycine site half saturated or half unsaturated? Effects of glutamatergic drugs in schizophrenia patients. Curr Opin Psychiatry 2006; 19: 151–157.

    Article  PubMed  Google Scholar 

  155. Tsai GE, Yang P, Chang YC, Chong MY . D-alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 2006; 59: 230–234.

    Article  CAS  PubMed  Google Scholar 

  156. Shim SS, Hammonds MD, Kee BS . Potentiation of the NMDA receptor in the treatment of schizophrenia: focused on the glycine site. Eur Arch Psychiatry Clin Neurosci 2008; 258: 16–27.

    Article  PubMed  Google Scholar 

  157. Yang CR, Svensson KA . Allosteric modulation of NMDA receptor via elevation of brain glycine and D-serine: the therapeutic potentials for schizophrenia. Pharmacol Ther 2008; 120: 317–332.

    Article  CAS  PubMed  Google Scholar 

  158. Tuominen HJ, Tiihonen J, Wahlbeck K . Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 2005; 72: 225–234.

    Article  PubMed  Google Scholar 

  159. Nilsson M, Carlsson A, Carlsson ML . Glycine and D-serine decrease MK-801-induced hyperactivity in mice. J Neural Transm 1997; 104: 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  160. Andersen JD, Pouzet B . Spatial memory deficits induced by perinatal treatment of rats with PCP and reversal effect of D-serine. Neuropsychopharmacology 2004; 29: 1080–1090.

    Article  CAS  PubMed  Google Scholar 

  161. Lipina T, Labrie V, Weiner I, Roder J . Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology (Berl) 2005; 179: 54–67.

    Article  CAS  Google Scholar 

  162. Olsen CK, Kreilgaard M, Didriksen M . Positive modulation of glutamatergic receptors potentiates the suppressive effects of antipsychotics on conditioned avoidance responding in rats. Pharmacol Biochem Behav 2006; 84: 259–265.

    Article  CAS  PubMed  Google Scholar 

  163. Karasawa J, Hashimoto K, Chaki S . D-serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behav Brain Res 2008; 186: 78–83.

    Article  CAS  PubMed  Google Scholar 

  164. Liu X, He G, Wang X, Chen Q, Qian X, Lin W et al. Association of DAAO with schizophrenia in the Chinese population. Neurosci Lett 2004; 369: 228–233.

    Article  CAS  PubMed  Google Scholar 

  165. Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 2004; 9: 203–207.

    Article  CAS  PubMed  Google Scholar 

  166. Wood LS, Pickering EH, Dechairo BM . Significant support for DAO as a schizophrenia susceptibility locus: examination of five genes putatively associated with schizophrenia. Biol Psychiatry 2007; 61: 1195–1199.

    Article  CAS  PubMed  Google Scholar 

  167. Corvin A, McGhee KA, Murphy K, Donohoe G, Nangle JM, Schwaiger S et al. Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 949–953.

    Article  CAS  PubMed  Google Scholar 

  168. Ohnuma T, Shibata N, Maeshima H, Baba H, Hatano T, Hanzawa R et al. Association analysis of glycine- and serine-related genes in a Japanese population of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 511–518.

    Article  CAS  PubMed  Google Scholar 

  169. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 2005; 77: 918–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu YL, Fann CS, Liu CM, Chang CC, Wu JY, Hung SI et al. No association of G72 and D-amino acid oxidase genes with schizophrenia. Schizophr Res 2006; 87: 15–20.

    Article  PubMed  Google Scholar 

  171. Shinkai T, De Luca V, Hwang R, Muller DJ, Lanktree M, Zai G et al. Association analyses of the DAOA/G30 and D-amino-acid oxidase genes in schizophrenia: further evidence for a role in schizophrenia. Neuromolecular Med 2007; 9: 169–177.

    Article  CAS  PubMed  Google Scholar 

  172. Vilella E, Costas J, Sanjuan J, Guitart M, De Diego Y, Carracedo A et al. Association of schizophrenia with DTNBP1 but not with DAO, DAOA, NRG1 and RGS4 nor their genetic interaction. J Psychiatr Res 2008; 42: 278–288.

    Article  PubMed  Google Scholar 

  173. Jonsson EG, Saetre P, Vares M, Andreou D, Larsson K, Timm S et al. DTNBP1, NRG1, DAOA, DAO and GRM3 polymorphisms and schizophrenia: an association study. Neuropsychobiology 2009; 59: 142–150.

    Article  CAS  PubMed  Google Scholar 

  174. Corvin A, Donohoe G, McGhee K, Murphy K, Kenny N, Schwaiger S et al. D-amino acid oxidase (DAO) genotype and mood symptomatology in schizophrenia. Neurosci Lett 2007; 426: 97–100.

    Article  CAS  PubMed  Google Scholar 

  175. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008; 40: 827–834.

    Article  CAS  PubMed  Google Scholar 

  176. Ioannidis JP, Boffetta P, Little J, O'Brien TR, Uitterlinden AG, Vineis P et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 2008; 37: 120–132.

    Article  PubMed  Google Scholar 

  177. Sun J, Kuo PH, Riley BP, Kendler KS, Zhao JM . Candidate genes for schizophrenia: a survey of association studies and gene ranking. Am J Med Genet B: Neuropsychiatr Genet 2008; 147B: 1173–1181.

    Article  Google Scholar 

  178. Shi J, Gershon ES, Liu C . Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr Res 2008; 104: 96–107.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Goldberg TE, Straub RE, Callicott JH, Hariri A, Mattay VS, Bigelow L et al. The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 2006; 31: 2022–2032.

    Article  CAS  PubMed  Google Scholar 

  180. Kvajo M, Dhilla A, Swor DE, Karayiorgou M, Gogos JA . Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol Psychiatry 2008; 13: 685–696.

    Article  CAS  PubMed  Google Scholar 

  181. Benzel I, Kew JNC, Vinnaraja R, Kelly F, de Belleroche J, Hirsch S et al. Investigation of G72 (DAOA) expression in the human brain. BMC Psychiatry 2008; 8: 94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Korostishevsky M, Kaganovich M, Cholostoy A, Ashkenazi M, Ratner Y, Dahary D et al. Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatry 2004; 56: 169–176.

    Article  CAS  PubMed  Google Scholar 

  183. Shi J, Badner JA, Gershon ES, Liu C . Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis. Schizophr Res 2008; 98: 89–97.

    Article  PubMed  Google Scholar 

  184. Otte DM, Bilkei-Forzo A, Filiou MD, Turck CW, Yilmaz O, Holst MI et al. Behavioral changes in G72/G30 transgenic mice. Eur Neuropsychopharmacol 2009; 19: 339–348.

    Article  CAS  PubMed  Google Scholar 

  185. Katsetos CD, Hyde TM, Herman MM . Neuropathology of the cerebellum in schizophrenia–an update: 1996 and future directions. Biol Psychiatry 1997; 42: 213–224.

    Article  CAS  PubMed  Google Scholar 

  186. Eastwood SL, Cotter D, Harrison PJ . Cerebellar synaptic protein expression in schizophrenia. Neuroscience 2001; 105: 219–229.

    Article  CAS  PubMed  Google Scholar 

  187. Andreasen NC, Pierson R . The role of the cerebellum in schizophrenia. Biol Psychiatry 2008; 64: 81–88.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Picard H, Amado I, Mouchet-Mages S, Olie JP, Krebs MO . The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull 2008; 34: 155–172.

    Article  PubMed  Google Scholar 

  189. Mittleman G, Goldowitz D, Heck DH, Blaha CD . Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia. Synapse 2008; 62: 544–550.

    Article  CAS  PubMed  Google Scholar 

  190. Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV . Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 2006; 53: 401–411.

    Article  PubMed  Google Scholar 

  191. Cid ME, Ortega A . Glutamate stimulates [3H]phorbol 12,13-dibutyrate binding in cultured Bergmann glia cells. Eur J Pharmacol 1993; 245: 51–54.

    Article  CAS  PubMed  Google Scholar 

  192. Brockhaus J, Deitmer JW . Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices. J Physiol 2002; 545: 581–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Huang H, Bordey A . Glial glutamate transporters limit spillover activation of presynaptic NMDA receptors and influence synaptic inhibition of Purkinje neurons. J Neurosci 2004; 24: 5659–5669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Piochon C, Irinopoulou T, Brusciano D, Bailly Y, Mariani J, Levenes C . NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell. J Neurosci 2007; 27: 10797–10809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gomi H, Ueno I, Yamanouchi K . Antioxidant enzymes in the brain of zitter rats: abnormal metabolism of oxygen species and its relevance to pathogenic changes in the brain of zitter rats with genetic spongiform encephalopathy. Brain Res 1994; 653: 66–72.

    Article  CAS  PubMed  Google Scholar 

  196. Li J, Shen Y, Liu A, Wang X, Zhao C . Transfection of the DAAO gene and subsequent induction of cytotoxic oxidative stress by D-alanine in 9L cells. Oncol Rep 2008; 20: 341–346.

    CAS  PubMed  Google Scholar 

  197. Jarskog LF, Gilmore JH, Selinger ES, Lieberman JA . Cortical bcl-2 protein expression and apoptotic regulation in schizophrenia. Biol Psychiatry 2000; 48: 641–650.

    Article  CAS  PubMed  Google Scholar 

  198. Benes FM, Matzilevich DA, Burke RE, Walsh J . The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 2006; 11: 241–251.

    Article  CAS  PubMed  Google Scholar 

  199. Ferraris D, Duvall B, Ko YS, Thomas AG, Rojas C, Majer P et al. Synthesis and biological evaluation of D-amino acid oxidase inhibitors. J Med Chem 2008; 51: 3357–3359.

    Article  CAS  PubMed  Google Scholar 

  200. Sparey T, Abeywickrema P, Almond S, Brandon N, Byrne N, Campbell A et al. The discovery of fused pyrrole carboxylic acids as novel, potent D-amino acid oxidase (DAO) inhibitors. Bioorg Med Chem Lett 2008; 18: 3386–3391.

    Article  CAS  PubMed  Google Scholar 

  201. Hashimoto K, Fujita Y, Horio M, Kunitachi S, Iyo M, Ferraris D et al. Co-administration of a D-amino acid oxidase inhibitor potentiates the efficacy of D-serine in attenuating prepulse inhibition deficits after administration of dizocilpine. Biol Psychiatry 2009; 65: 1103–1106.

    Article  CAS  PubMed  Google Scholar 

  202. Smith SM, Uslaner JM, Yao L, Mullins CM, Surles NO, Huszar SL et al. The behavioral and neurochemical effects of a novel D-amino acid oxidase inhibitor compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and D-serine. J Pharmacol Exp Ther 2009; 328: 921–930.

    Article  CAS  PubMed  Google Scholar 

  203. Horio M, Fujita Y, Ishima T, Iyo M, Ferraris D, Tsukamoto T et al. Effects of D-amino acid oxidase inhibitor on the extracellular D-alanine levels and the efficacy of D-alanine on dizocilpine-induced prepulse inhibition deficits in mice. Open Clin Chem J 2009; 2: 16–21.

    Article  CAS  Google Scholar 

  204. Williams M . Commentary: Genome-based CNS drug discovery: D-amino acid oxidase (DAA0) as a novel target for antipsychotic medications: progress and challenges. Biochem Pharmacol. e-pub ahead of print; doi:10.1016/j.bcp.2009.06.108.

    Article  CAS  PubMed  Google Scholar 

  205. Iwana S, Kawazoe T, Park HK, Tsuchiya K, Ono K, Yorita K et al. Chlorpromazine oligomer is a potentially active substance that inhibits human D-amino acid oxidase, product of a susceptibility gene for schizophrenia. J Enzyme Inhib Med Chem 2008; 23: 901–911.

    Article  CAS  PubMed  Google Scholar 

  206. Abou El-Magd R, Park H, Kawazoe T, Iwana S, Ono K, Chung S et al. The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J Psychopharmacol 2009 (e-pub ahead of print, 27 March).

  207. Labrie V, Duffy S, Wang W, Barger SW, Baker GB, Roder JC . Genetic inactivation of D-amino acid oxidase enhances extinction and reversal learning in mice. Learn Mem 2009; 16: 28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Basu AC, Tsai GE, Ma C, Ehmsen J, Mustafa A, Han L et al. Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 2009; 14: 719–727.

    Article  CAS  PubMed  Google Scholar 

  209. Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC et al. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 2009; 18: 3227–3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ganote CE, Peterson DR, Carone FA . The nature of D-serine-induced nephrotoxicity. Am J Pathol 1974; 77: 269–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Maekawa M, Okamura T, Kasai N, Hori Y, Summer KH, Konno R . D-amino-acid oxidase is involved in D-serine-induced nephrotoxicity. Chem Res Toxicol 2005; 18: 1678–1682.

    Article  CAS  PubMed  Google Scholar 

  212. Williams RE, Lock EA . Sodium benzoate attenuates D-serine induced nephrotoxicity in the rat. Toxicology 2005; 207: 35–48.

    Article  CAS  PubMed  Google Scholar 

  213. Williams RE, Major H, Lock EA, Lenz EM, Wilson ID . D-serine-induced nephrotoxicity: a HPLC-TOF/MS-based metabonomics approach. Toxicology 2005; 207: 179–190.

    Article  CAS  PubMed  Google Scholar 

  214. Krug AW, Volker K, Dantzler WH, Silbernagl S . Why is D-serine nephrotoxic and alpha-aminoisobutyric acid protective? Am J Physiol Renal Physiol 2007; 293: F382–F390.

    Article  CAS  PubMed  Google Scholar 

  215. Hons J, Zirko R, Ulrychova M, Cermakova E, Libiger J . D-serine serum levels in patients with schizophrenia: relation to psychopathology and comparison to healthy subjects. Neuroendocrinol Lett 2008; 29: 485–492.

    CAS  PubMed  Google Scholar 

  216. Fuchs SA, De Barse MM, Scheepers FE, Cahn W, Dorland L, de Sain-van der Velden MG et al. Cerebrospinal fluid D-serine and glycine concentrations are unaltered and unaffected by olanzapine therapy in male schizophrenic patients. Eur Neuropsychopharmacol 2008; 18: 333–338.

    Article  CAS  PubMed  Google Scholar 

  217. de Bortoli da Silva L, Leipnitz G, Seminotti B, Fernandes CG, Beskow AP, Amaral AU et al. D-serine inducves lipid and protein oxidative damage and decreases glutathione levels in brain cortex of rats. Brain Res 2009; 1256: 34–42.

    Article  CAS  Google Scholar 

  218. Katsuki H, Nonaka M, Shirakawa H, Kume T, Akaike A . Endogenous D-serine is involved in induction of neuronal death by N-methyl-D-aspartate and simulated ischemia in rat cerebrocortical slices. J Pharmacol Exp Therap 2004; 311: 836–844.

    Article  CAS  Google Scholar 

  219. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 2006; 125: 775–784.

    Article  CAS  PubMed  Google Scholar 

  220. Nong Y, Huang YQ, Ju W, Kalia LV, Adhmadian G, Wang YT et al. Glycine binding primes NMDA receptor internalisation. Nature 2003; 422: 302–307.

    Article  CAS  PubMed  Google Scholar 

  221. Martin LF, Kem WR, Freedman R . Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl) 2004; 174: 54–64.

    Article  CAS  Google Scholar 

  222. Wang Q, Jaaro-Peled H, Sawa A, Brandon NJ . How has DISC1 enabled drug discovery? Mol Cell Neurosci 2008; 37: 187–195.

    Article  CAS  PubMed  Google Scholar 

  223. Tunbridge EM, Harrison PJ, Weinberger DR . Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 2006; 60: 141–151.

    Article  CAS  PubMed  Google Scholar 

  224. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 2004; 101: 12604–12609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Moghaddam B . Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology (Berl) 2004; 174: 39–44.

    Article  CAS  Google Scholar 

  226. Harrison PJ, Lyon L, Sartorius LJ, Burnet PW, Lane TA . The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. J Psychopharmacol 2008; 22: 308–322.

    Article  CAS  PubMed  Google Scholar 

  227. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 2007; 13: 1102–1107.

    Article  CAS  PubMed  Google Scholar 

  228. http://newsroom.lilly.com/releasedetail.cfm?releaseid=37365. (accessed on 2 June 2009).

  229. Steffek AE, Haroutunian V, Meador-Woodruff JH . Serine racemase protein expression in cortex and hippocampus in schizophrenia. Neuroreport 2006; 17: 1181–1185.

    Article  CAS  PubMed  Google Scholar 

  230. Burnet PW, Hutchinson L, von Hesling M, Gilbert EJ, Brandon NJ, Rutter AR et al. Expression of D-serine and glycine transporters in the prefrontal cortex and cerebellum in schizophrenia. Schizophr Res 2008; 102: 283–294.

    Article  CAS  PubMed  Google Scholar 

  231. Hashimoto A, Yoshikawa M, Niwa A, Konno R . Mice lacking D-amino acid oxidase activity display marked attenuation of stereotypy and ataxia induced by MK-801. Brain Res 2005; 1033: 210–215.

    Article  CAS  PubMed  Google Scholar 

  232. Hashimoto A, Konno R, Yano H, Yoshikawa M, Tamaki R, Matsumoto H et al. Mice lacking D-amino acid oxidase activity exhibit marked reduction of methamphetamine-induced stereotypy. Eur J Pharmacol 2008; 586: 221–225.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work on DAO is supported by a project grant from the United Kingdom Medical Research Council (MRC) to PJH, LV and PWJB, and by an MRC studentship to JFB. We thank Nick Brandon for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verrall, L., Burnet, P., Betts, J. et al. The neurobiology of D-amino acid oxidase and its involvement in schizophrenia. Mol Psychiatry 15, 122–137 (2010). https://doi.org/10.1038/mp.2009.99

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.99

Keywords

This article is cited by

Search

Quick links