Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Insulin-like growth factor 1 is a direct HOXA9 target important for hematopoietic transformation

Abstract

HOX homeobox proteins are key oncogenic drivers in hematopoietic malignancies. Here we demonstrate that HOXA1, HOXA6 and predominantly HOXA9 are able to induce the production of insulin-like growth factor 1 (Igf1). In chromatin immunoprecipitations, HOXA9 bound directly to the putative promoter and a DNase-hypersensitive region in the first intron of the Igf1 gene. Transcription rates of the Igf1 gene paralleled HOXA9 activity. Primary cells transformed by HOXA9 expressed functional Igf1 receptors and activated the protein kinase Akt in response to Igf1 stimulation, suggesting the existence of an autocrine signaling loop. Genomic deletion of the Igf1 gene by Cre-mediated recombination increased sensitivity toward apoptosis after serum starvation. In addition, the leukemogenic potential of Igf1-negative, HOXA9-transformed cells was impaired, leading to a significant delay in disease development on transplantation into recipient animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Alharbi RA, Pettengell R, Pandha HS, Morgan R . The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia 2013; 27: 1000–1008.

    Article  CAS  Google Scholar 

  2. Argiropoulos B, Humphries RK . Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007; 26: 6766–6776.

    Article  CAS  Google Scholar 

  3. Eklund EA . The role of HOX genes in malignant myeloid disease. Curr Opin Hematol 2007; 14: 85–89.

    Article  CAS  Google Scholar 

  4. Caudell D, Zhang Z, Chung YJ, Aplan PD . Expression of a CALM-AF10 fusion gene leads to Hoxa cluster overexpression and acute leukemia in transgenic mice. Cancer Res 2007; 67: 8022–8031.

    Article  CAS  Google Scholar 

  5. Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, Shurtleff SA et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia 2007; 21: 2000–2009.

    Article  CAS  Google Scholar 

  6. Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y . Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol 2006; 8: 1017–1024.

    Article  CAS  Google Scholar 

  7. Rawat VP, Humphries RK, Buske C . Beyond Hox: the role of ParaHox genes in normal and malignant hematopoiesis. Blood 2012; 120: 519–527.

    Article  CAS  Google Scholar 

  8. Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 2004; 24: 617–628.

    Article  CAS  Google Scholar 

  9. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19: 358–366.

    Article  CAS  Google Scholar 

  10. Gough SM, Slape CI, Aplan PD . NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 2011; 118: 6247–6257.

    Article  CAS  Google Scholar 

  11. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    Article  CAS  Google Scholar 

  12. Breitinger C, Maethner E, Garcia-Cuellar MP, Schambony A, Fischer KD, Schilling K et al. HOX genes regulate Rac1 activity in hematopoietic cells through control of Vav2 expression. Leukemia 2013; 27: 236–238.

    Article  CAS  Google Scholar 

  13. Calero-Nieto FJ, Joshi A, Bonadies N, Kinston S, Chan WI, Gudgin E et al. HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias. Oncogene 2013; 32: 5471–5480.

    Article  CAS  Google Scholar 

  14. Brumatti G, Salmanidis M, Kok CH, Bilardi RA, Sandow JJ, Silke N et al. HoxA9 regulated Bcl-2 expression mediates survival of myeloid progenitors and the severity of HoxA9-dependent leukemia. Oncotarget 2013; 4: 1933–1947.

    Article  Google Scholar 

  15. Shah CA, Bei L, Wang H, Platanias LC, Eklund EA . The leukemia-associated Mll-Ell oncoprotein induces fibroblast growth factor 2 (Fgf2)-dependent cytokine hypersensitivity in myeloid progenitor cells. J Biol Chem 2013; 288: 32490–32505.

    Article  CAS  Google Scholar 

  16. Huang Y, Sitwala K, Bronstein J, Sanders D, Dandekar M, Collins C et al. Identification and characterization of Hoxa9 binding sites in hematopoietic cells. Blood 2012; 119: 388–398.

    Article  CAS  Google Scholar 

  17. Pollak M . The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 2012; 12: 159–169.

    Article  CAS  Google Scholar 

  18. Liu JL, Grinberg A, Westphal H, Sauer B, Accili D, Karas M et al. Insulin-like growth factor-I affects perinatal lethality and postnatal development in a gene dosage-dependent manner: manipulation using the Cre/loxP system in transgenic mice. Mol Endocrinol 1998; 12: 1452–1462.

    Article  CAS  Google Scholar 

  19. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    Article  CAS  Google Scholar 

  20. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237.

    Article  CAS  Google Scholar 

  21. Bach C, Buhl S, Mueller D, Garcia-Cuellar MP, Maethner E, Slany RK . Leukemogenic transformation by HOXA cluster genes. Blood 2010; 115: 2910–2918.

    Article  CAS  Google Scholar 

  22. Milne TA, Zhao K, Hess JL . Chromatin immunoprecipitation (ChIP) for analysis of histone modifications and chromatin-associated proteins. Methods Mol Biol 2009; 538: 409–423.

    Article  CAS  Google Scholar 

  23. Breitinger C, Maethner E, Garcia-Cuellar MP, Slany RK . The homeodomain region controls the phenotype of HOX-induced murine leukemia. Blood 2012; 120: 4018–4027.

    Article  CAS  Google Scholar 

  24. Walf-Vorderwulbecke V, de Boer J, Horton SJ, van Amerongen R, Proost N, Berns A et al. Frat2 mediates the oncogenic activation of Rac by MLL fusions. Blood 2012; 120: 4819–4828.

    Article  CAS  Google Scholar 

  25. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995; 23: 1686–1690.

    Article  CAS  Google Scholar 

  26. Hager GL, Lim CS, Elbi C, Baumann CT . Trafficking of nuclear receptors in living cells. J Steroid Biochem Mol Biol 2000; 74: 249–254.

    Article  CAS  Google Scholar 

  27. Honegger A, Humbel RE . Insulin-like growth factors I and II in fetal and adult bovine serum. Purification, primary structures, and immunological cross-reactivities. J Biol Chem 1986; 261: 569–575.

    CAS  PubMed  Google Scholar 

  28. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 2011; 3: 70ra13.

    Article  Google Scholar 

  29. Steuerman R, Shevah O, Laron Z . Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol 2011; 164: 485–489.

    Article  CAS  Google Scholar 

  30. Ozeki K, Morishita Y, Saito S, Umemura K, Yamaguchi Y, Tatekawa S et al. Acute myeloid leukemia and colon carcinoma during the course of acromegaly. Int J Hematol 2013; 98: 620–624.

    Article  Google Scholar 

  31. Medyouf H, Gusscott S, Wang H, Tseng JC, Wai C, Nemirovsky O et al. High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med 2011; 208: 1809–1822.

    Article  CAS  Google Scholar 

  32. Yamada H, Iijima K, Tomita O, Taguchi T, Miharu M, Kobayashi K et al. Effects of insulin-like growth factor-1 on B-cell precursor acute lymphoblastic leukemia. Int J Hematol 2013; 97: 73–82.

    Article  CAS  Google Scholar 

  33. Yaktapour N, Ubelhart R, Schuler J, Aumann K, Dierks C, Burger M et al. Insulin-like growth factor-1 receptor (IGF1R) as a novel target in chronic lymphocytic leukemia. Blood 2013; 122: 1621–1633.

    Article  CAS  Google Scholar 

  34. Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L et al. Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 2010; 95: 415–423.

    Article  CAS  Google Scholar 

  35. Jenkins CR, Shevchuk OO, Giambra V, Lam SH, Carboni JM, Gottardis MM et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol 2012; 40: 715–723 e716.

    Article  CAS  Google Scholar 

  36. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R . Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009; 30: 586–623.

    Article  CAS  Google Scholar 

  37. Chokkalingam AP, Metayer C, Scelo G, Chang JS, Schiffman J, Urayama KY et al. Fetal growth and body size genes and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control 2012; 23: 1577–1585.

    Article  Google Scholar 

  38. Thorvaldsdottir H, Robinson JT, Mesirov JP . Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013; 14: 178–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Renate Zimmermann for technical assistance and Constanze Breitinger for help in early stages of this study. This work was supported by research funding from the Deutsche Forschungsgemeinschaft (SL27/8-1) to RKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R K Slany.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steger, J., Füller, E., Garcia-Cuellar, MP. et al. Insulin-like growth factor 1 is a direct HOXA9 target important for hematopoietic transformation. Leukemia 29, 901–908 (2015). https://doi.org/10.1038/leu.2014.287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.287

This article is cited by

Search

Quick links