Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapeutic targeting of naturally presented myeloperoxidase-derived HLA peptide ligands on myeloid leukemia cells by TCR-transgenic T cells

Abstract

T cells have been proven to be therapeutically effective in patients with relapsed leukemias, although target antigens on leukemic cells as well as T-cell receptors (TCRs), potentially recognizing those antigens, are mostly unknown. We have applied an immunopeptidomic approach and isolated human leukocyte antigen (HLA) ligands from primary leukemia cells. We identified a number of ligands derived from different genes that are restrictedly expressed in the hematopoietic system. We exemplarily selected myeloperoxidase (MPO) as a potential target and isolated a high-avidity TCR with specificity for a HLA-B*07:02-(HLA-B7)-restricted epitope of MPO in the single HLA-mismatched setting. T cells transgenic for this TCR demonstrated high peptide and antigen specificity as well as leukemia reactivity in vitro and in vivo. In contrast, no significant on- and off-target toxicity could be observed. In conclusion, we here demonstrate, exemplarily for MPO, that leukemia-derived HLA ligands can be selected for specific effector tool development to redirect T cells to be used for graft manipulation or adoptive T-cell therapies in diverse transplant settings. This approach can be extended to other HLA ligands and HLA molecules in order to provide better treatment options for this life-threatening disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76: 2462–2465.

    CAS  PubMed  Google Scholar 

  2. Rotzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990; 348: 252–254.

    Article  CAS  Google Scholar 

  3. Hunt DF, Michel H, Dickinson TA, Shabanowitz J, Cox AL, Sakaguchi K et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 1992; 256: 1817–1820.

    Article  CAS  Google Scholar 

  4. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 2012; 18: 1254–1261.

    Article  CAS  Google Scholar 

  5. Bassani-Sternberg M, Barnea E, Beer I, Avivi I, Katz T, Admon A . Feature Article: Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci USA 2010; 107: 18769–18776.

    Article  CAS  Google Scholar 

  6. Delluc S, Tourneur L, Fradelizi D, Rubio MT, Marchiol-Fournigault C, Chiocchia G et al. DC-based vaccine loaded with acid-eluted peptides in acute myeloid leukemia: the importance of choosing the best elution method. Cancer Immunol Immunother 2007; 56: 1–12.

    Article  CAS  Google Scholar 

  7. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  Google Scholar 

  8. Eggleton P, Gargan R, Fisher D . Rapid method for the isolation of neutrophils in high yield without the use of dextran or density gradient polymers. J Immunol Methods 1989; 121: 105–113.

    Article  CAS  Google Scholar 

  9. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG . Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351: 290–296.

    Article  CAS  Google Scholar 

  10. Hauck SM, Dietter J, Kramer RL, Hofmaier F, Zipplies JK, Amann B et al. Deciphering membrane-associated molecular processes in target tissue of autoimmune uveitis by label-free quantitative mass spectrometry. Mol Cell Proteomics 2010; 9: 2292–2305.

    Article  CAS  Google Scholar 

  11. Niedermeyer TH, Strohalm M . mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS One 2012; 7: e44913.

    Article  CAS  Google Scholar 

  12. Wilde S, Sommermeyer D, Frankenberger B, Schiemann M, Milosevic S, Spranger S et al. Dendritic cells pulsed with RNA encoding allogeneic MHC and antigen induce T cells with superior antitumor activity and higher TCR functional avidity. Blood 2009; 114: 2131–2139.

    Article  CAS  Google Scholar 

  13. Knabel M, Franz TJ, Schiemann M, Wulf A, Villmow B, Schmidt B et al. Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 2002; 8: 631–637.

    Article  CAS  Google Scholar 

  14. Schuster IG, Busch DH, Eppinger E, Kremmer E, Milosevic S, Hennard C et al. Allorestricted T cells with specificity for the FMNL1-derived peptide PP2 have potent antitumor activity against hematologic and other malignancies. Blood 2007; 110: 2931–2939.

    Article  CAS  Google Scholar 

  15. Weigand LU, Liang X, Schmied S, Mall S, Klar R, Stotzer OJ et al. Isolation of human MHC class II-restricted T cell receptors from the autologous T-cell repertoire with potent anti-leukaemic reactivity. Immunology 2012; 137: 226–238.

    Article  CAS  Google Scholar 

  16. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA . Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 2006; 66: 8878–8886.

    Article  CAS  Google Scholar 

  17. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 2007; 109: 2331–2338.

    Article  CAS  Google Scholar 

  18. Scholten KB, Kramer D, Kueter EW, Graf M, Schoedl T, Meijer CJ et al. Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 2006; 119: 135–145.

    Article  CAS  Google Scholar 

  19. Wang X, Naranjo A, Brown CE, Bautista C, Wong CW, Chang WC et al. Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. J Immunother 2012; 35: 689–701.

    Article  CAS  Google Scholar 

  20. Liang X, Weigand LU, Schuster IG, Eppinger E, van der Griendt JC, Schub A et al. A single TCR alpha-chain with dominant peptide recognition in the allorestricted HER2/neu-specific T cell repertoire. J Immunol 2010; 184: 1617–1629.

    Article  CAS  Google Scholar 

  21. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013; 122: 863–871.

    Article  CAS  Google Scholar 

  22. Schirle M, Keilholz W, Weber B, Gouttefangeas C, Dumrese T, Becker HD et al. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol 2000; 30: 2216–2225.

    Article  CAS  Google Scholar 

  23. Wang X, Berger C, Wong CW, Forman SJ, Riddell SR, Jensen MC . Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 2011; 117: 1888–1898.

    Article  CAS  Google Scholar 

  24. Brown J, Poles A, Brown CJ, Contreras M, Navarrete CV . HLA-A, -B and -DR antigen frequencies of the London Cord Blood Bank units differ from those found in established bone marrow donor registries. Bone Marrow Transplant. 2000; 25: 475–481.

    Article  CAS  Google Scholar 

  25. McCormack E, Micklem DR, Pindard LE, Silden E, Gallant P, Belenkov A et al. In vivo optical imaging of acute myeloid leukemia by green fluorescent protein: time-domain autofluorescence decoupling, fluorophore quantification, and localization. Mol Imaging 2007; 6: 193–204.

    Article  CAS  Google Scholar 

  26. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009; 114: 535–546.

    Article  CAS  Google Scholar 

  27. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013; 36: 133–151.

    Article  CAS  Google Scholar 

  28. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  Google Scholar 

  29. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29: 917–924.

    Article  Google Scholar 

  30. Engels B, Engelhard VH, Sidney J, Sette A, Binder DC, Liu RB et al. Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 2013; 23: 516–526.

    Article  CAS  Google Scholar 

  31. Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E, Darvishian F et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci USA 2013; 110: 6973–6978.

    Article  CAS  Google Scholar 

  32. Heemskerk MH, Hoogeboom M, de Paus RA, Kester MG, van der Hoorn MA, Goulmy E et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 2003; 102: 3530–3540.

    Article  CAS  Google Scholar 

  33. Amir AL, van der Steen DM, van Loenen MM, Hagedoorn RS, de Boer R, Kester MD et al. PRAME-specific Allo-HLA-restricted T cells with potent antitumor reactivity useful for therapeutic T-cell receptor gene transfer. Clin Cancer Res 2011; 17: 5615–5625.

    Article  CAS  Google Scholar 

  34. Xue SA, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 2005; 106: 3062–3067.

    Article  CAS  Google Scholar 

  35. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med 2013; 5: 174ra27.

    Article  Google Scholar 

  36. Yong AS, Rezvani K, Savani BN, Eniafe R, Mielke S, Goldman JM et al. High PR3 or ELA2 expression by CD34+ cells in advanced-phase chronic myeloid leukemia is associated with improved outcome following allogeneic stem cell transplantation and may improve PR1 peptide-driven graft-versus-leukemia effects. Blood 2007; 110: 770–775.

    Article  CAS  Google Scholar 

  37. Sergeeva A, Alatrash G, He H, Ruisaard K, Lu S, Wygant J et al. An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood 2011; 117: 4262–4272.

    Article  CAS  Google Scholar 

  38. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 2013; 19: 747–752.

    Article  CAS  Google Scholar 

  39. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 2013; 31: e439–e442.

    Article  Google Scholar 

  40. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

    Article  CAS  Google Scholar 

  41. Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 2009; 361: 478–488.

    Article  CAS  Google Scholar 

  42. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T . Expression of tumour-specific antigens underlies cancer immunoediting. Nature 2012; 482: 405–409.

    Article  CAS  Google Scholar 

  43. Prokopowicz Z, Marcinkiewicz J, Katz DR, Chain BM . Neutrophil myeloperoxidase: soldier and statesman. Arch Immunol Ther Exp (Warsz) 2012; 60: 43–54.

    Article  CAS  Google Scholar 

  44. Frank O, Rudolph C, Heberlein C, von Neuhoff N, Schrock E, Schambach A et al. Tumor cells escape suicide gene therapy by genetic and epigenetic instability. Blood 2004; 104: 3543–3549.

    Article  CAS  Google Scholar 

  45. Klippel ZK, Chou J, Towlerton AM, Voong LN, Robbins P, Bensinger WI et al. Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC. Gene Ther 2014; 21: 337–342.

    Article  CAS  Google Scholar 

  46. Kim YR, Eom JI, Kim SJ, Jeung HK, Cheong JW, Kim JS et al. Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. J Pharmacol Exp Ther 2010; 335: 389–400.

    Article  CAS  Google Scholar 

  47. Majeti R, Becker MW, Tian Q, Lee TL, Yan X, Liu R et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci USA 2009; 106: 3396–3401.

    Article  CAS  Google Scholar 

  48. Gal H, Amariglio N, Trakhtenbrot L, Jacob-Hirsh J, Margalit O, Avigdor A et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 2006; 20: 2147–2154.

    Article  CAS  Google Scholar 

  49. Fouret P, du Bois RM, Bernaudin JF, Takahashi H, Ferrans VJ, Crystal RG . Expression of the neutrophil elastase gene during human bone marrow cell differentiation. J Exp Med 1989; 169: 833–845.

    Article  CAS  Google Scholar 

  50. Tobler A, Miller CW, Johnson KR, Selsted ME, Rovera G, Koeffler HP . Regulation of gene expression of myeloperoxidase during myeloid differentiation. J Cell Physiol 1988; 136: 215–225.

    Article  CAS  Google Scholar 

  51. Reits EA, Vos JC, Gromme M, Neefjes J . The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 2000; 404: 774–778.

    Article  CAS  Google Scholar 

  52. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 2013; 5: 197ra03.

    Article  Google Scholar 

  53. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    Article  CAS  Google Scholar 

  54. Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 2013; 122: 3138–3148.

    Article  CAS  Google Scholar 

  55. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR . Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 2008; 118: 294–305.

    Article  CAS  Google Scholar 

  56. Heemskerk MH, Hoogeboom M, Hagedoorn R, Kester MG, Willemze R, Falkenburg JH . Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med 2004; 199: 885–894.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stanley Riddell and Hans-Jochem Kolb for the helpful discussions and critical review of the manuscript; Josef Mautner, Ralph Mocikat, Steve Marsh and Stanley Riddell for providing cell lines; Eilon Barnea for data analysis with Pep-Miner; Ciara Utsch for language revision as well as Stephanie Rämisch, Ciara Utsch and Ines Nachtigal for excellent technical support. This work was supported by grants to AMK from the Deutsche José Carreras Leukämie-Stiftung (DJCLS R11/23), BayImmuNet (Nr. F2-F5121.7.3-10c/23932), Deutsche Krebshilfe (110281) and the Deutsche Forschungsgemeinschaft (DFG), SFB824/C10.

Author contributions

RK, S Schober, MR, SM, JM, JS-H and AA did experiments; RK, S Schober, MR, SMH, MU, JS-H, CP and AMK analyzed the data; DHB provided the HLA multimer technology; S Stevanović provided HLA-B7 ligands for off-target toxicity studies; MS supported PET analysis of mouse models; S Stevanović and RO provided technical support; AMK conceived and supervised the study; and RK and AMK planned experiments and composed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Krackhardt.

Ethics declarations

Competing interests

A patent application is currently ongoing for peptide and TCR sequences. Apart from that the authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klar, R., Schober, S., Rami, M. et al. Therapeutic targeting of naturally presented myeloperoxidase-derived HLA peptide ligands on myeloid leukemia cells by TCR-transgenic T cells. Leukemia 28, 2355–2366 (2014). https://doi.org/10.1038/leu.2014.131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.131

This article is cited by

Search

Quick links