Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Natural killer cell immune escape in acute myeloid leukemia

Abstract

As central players of the innate immune system, natural killer (NK) cells can exert direct and indirect anti-tumor effects via their cytotoxic and immune regulatory capacities, pivotal in the induction of an effective adaptive anti-tumor immune response. Hence, NK cells are considered to be important in the immune surveillance of cancer. In acute myeloid leukemia (AML) patients, however, significantly impaired NK cell functions can facilitate escape from immune surveillance and affect patient outcome. Here, we review various NK cell defects and AML evasion mechanisms to escape from NK cell-mediated immune surveillance and we discuss NK cell-related parameters as prediction factors of AML patient outcome. On the basis of these observations, novel immunotherapeutic strategies capitalizing on the potentiation of NK cell functions have emerged in AML immunotherapy, as discussed in this review. Increased knowledge on AML escape routes from NK cell immune surveillance will further aid in the design of novel NK cell-based immunotherapy approaches for the treatment of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Smits EL, Berneman ZN, Van Tendeloo VF . Immunotherapy of acute myeloid leukemia: current approaches. Oncologist 2009; 14: 240–252.

    CAS  PubMed  Google Scholar 

  2. Barrett AJ, Le Blanc K . Immunotherapy prospects for acute myeloid leukaemia. Clin Exp Immunol 2010; 161: 223–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Smits EL, Lee C, Hardwick N, Brooks S, Van Tendeloo VF, Orchard K et al. Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia. Cancer Immunol Immunother 2011; 60: 757–769.

    PubMed  Google Scholar 

  4. Degli-Esposti MA, Smyth MJ . Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005; 5: 112–124.

    CAS  PubMed  Google Scholar 

  5. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  6. Ruggeri L, Mancusi A, Burchielli E, Aversa F, Martelli MF, Velardi A . Natural killer cell alloreactivity in allogeneic hematopoietic transplantation. Curr Opin Oncol 2007; 19: 142–147.

    PubMed  Google Scholar 

  7. Passweg JR, Stern M, Koehl U, Uharek L, Tichelli A . Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant 2005; 35: 637–643.

    CAS  PubMed  Google Scholar 

  8. Passweg JR, Huard B, Tiercy JM, HLA Roosnek E . and KIR polymorphisms affect NK-cell anti-tumor activity. Trends Immunol 2007; 28: 437–441.

    CAS  PubMed  Google Scholar 

  9. Nguyen S, Beziat V, Roos-Weil D, Vieillard V . Role of natural killer cells in hematopoietic stem cell transplantation: myth or reality? J Innate Immun 2011; 3: 383–394.

    PubMed  Google Scholar 

  10. Malmberg KJ, Bryceson YT, Carlsten M, Andersson S, Bjorklund A, Bjorkstrom NK et al. NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy. Cancer Immunol Immunother 2008; 57: 1541–1552.

    CAS  PubMed  Google Scholar 

  11. Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L . Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol 2008; 9: 486–494.

    CAS  PubMed  Google Scholar 

  12. Sorskaar D, Lie SO, Forre O . Natural killer cell activity of peripheral blood and bone marrow mononuclear cells from patients with childhood acute lymphoblastic leukemia. Acta Paediatr Scand 1985; 74: 433–437.

    CAS  PubMed  Google Scholar 

  13. Konjevic G, Jurisic V, Banicevic B, Spuzic I . The difference in NK-cell activity between patients with non-Hodgkin's lymphomas and Hodgkin's disease. Br J Haematol 1999; 104: 144–151.

    CAS  PubMed  Google Scholar 

  14. Epling-Burnette PK, Bai F, Painter JS, Rollison DE, Salih HR, Krusch M et al. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 2007; 109: 4816–4824.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schreiber RD, Old LJ, Smyth MJ . Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565–1570.

    CAS  PubMed  Google Scholar 

  16. el-Shami K, Smith BD . Immunotherapy for myeloid leukemias: current status and future directions. Leukemia 2008; 22: 1658–1664.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pizzolo G, Trentin L, Vinante F, Agostini C, Zambello R, Masciarelli M et al. Natural killer cell function and lymphoid subpopulations in acute non-lymphoblastic leukaemia in complete remission. Br J Cancer 1988; 58: 368–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tratkiewicz JA, Szer J . Loss of natural killer activity as an indicator of relapse in acute leukaemia. Clin Exp Immunol 1990; 80: 241–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pross HF, Lotzova E . Role of natural killer cells in cancer. Nat Immun 1993; 12: 279–292.

    CAS  PubMed  Google Scholar 

  20. Tajima F, Kawatani T, Endo A, Kawasaki H . Natural killer cell activity and cytokine production as prognostic factors in adult acute leukemia. Leukemia 1996; 10: 478–482.

    CAS  PubMed  Google Scholar 

  21. Lowdell MW, Ray N, Craston R, Corbett T, Deane M, Prentice HG . The in vitro detection of anti-leukaemia-specific cytotoxicity after autologous bone marrow transplantation for acute leukaemia. Bone Marrow Transplant 1997; 19: 891–897.

    CAS  PubMed  Google Scholar 

  22. Lowdell MW, Craston R, Samuel D, Wood ME, O'Neill E, Saha V et al. Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells. Br J Haematol 2002; 117: 821–827.

    CAS  PubMed  Google Scholar 

  23. Bryceson YT, March ME, Ljunggren HG, Long EO . Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 2006; 107: 159–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 2002; 99: 3661–3667.

    CAS  PubMed  Google Scholar 

  25. Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 2007; 109: 323–330.

    CAS  PubMed  Google Scholar 

  26. Szczepanski MJ, Szajnik M, Welsh A, Foon KA, Whiteside TL, Boyiadzis M . Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother 2010; 59: 73–79.

    CAS  PubMed  Google Scholar 

  27. Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ et al. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother 2011; 60: 1195–1205.

    CAS  PubMed  Google Scholar 

  28. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005; 105: 2066–2073.

    CAS  PubMed  Google Scholar 

  29. Verheyden S, Bernier M, Demanet C . Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia 2004; 18: 2002–2007.

    CAS  PubMed  Google Scholar 

  30. Ruggeri L, Mancusi A, Capanni M, Martelli MF, Velardi A . Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr Opin Immunol 2005; 17: 211–217.

    CAS  PubMed  Google Scholar 

  31. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 2007; 110: 433–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 2003; 102: 814–819.

    CAS  PubMed  Google Scholar 

  33. Bishara A, De Santis D, Witt CC, Brautbar C, Christiansen FT, Or R et al. The beneficial role of inhibitory KIR genes of HLA class I NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD. Tissue Antigens 2004; 63: 204–211.

    CAS  PubMed  Google Scholar 

  34. Schaffer M, Malmberg KJ, Ringden O, Ljunggren HG, Remberger M . Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation. Transplantation 2004; 78: 1081–1085.

    PubMed  Google Scholar 

  35. Bornhauser M, Schwerdtfeger R, Martin H, Frank KH, Theuser C, Ehninger G . Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors. Blood 2004; 103: 2860–2861, ; author reply 2862.

    PubMed  Google Scholar 

  36. Beelen DW, Ottinger HD, Ferencik S, Elmaagacli AH, Peceny R, Trenschel R et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood 2005; 105: 2594–2600.

    CAS  PubMed  Google Scholar 

  37. Kroger N, Binder T, Zabelina T, Wolschke C, Schieder H, Renges H et al. Low number of donor activating killer immunoglobulin-like receptors (KIR) genes but not KIR-ligand mismatch prevents relapse and improves disease-free survival in leukemia patients after in vivo T-cell depleted unrelated stem cell transplantation. Transplantation 2006; 82: 1024–1030.

    PubMed  Google Scholar 

  38. Farag SS, Bacigalupo A, Eapen M, Hurley C, Dupont B, Caligiuri MA et al. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant 2006; 12: 876–884.

    CAS  PubMed  Google Scholar 

  39. Verheyden S, Demanet C . NK cell receptors and their ligands in leukemia. Leukemia 2008; 22: 249–257.

    CAS  PubMed  Google Scholar 

  40. Nguyen S, Dhedin N, Vernant JP, Kuentz M, Al Jijakli A, Rouas-Freiss N et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood 2005; 105: 4135–4142.

    CAS  PubMed  Google Scholar 

  41. Nguyen S, Beziat V, Dhedin N, Kuentz M, Vernant JP, Debre P et al. HLA-E upregulation on IFN-gamma-activated AML blasts impairs CD94/NKG2A-dependent NK cytolysis after haplo-mismatched hematopoietic SCT. Bone Marrow Transplant 2009; 43: 693–699.

    CAS  PubMed  Google Scholar 

  42. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L et al. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 2005; 105: 3615–3622.

    CAS  PubMed  Google Scholar 

  43. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 2003; 102: 1389–1396.

    CAS  PubMed  Google Scholar 

  44. Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 2008; 111: 1428–1436.

    CAS  PubMed  Google Scholar 

  45. Baessler T, Krusch M, Schmiedel BJ, Kloss M, Baltz KM, Wacker A et al. Glucocorticoid-induced tumor necrosis factor receptor-related protein ligand subverts immunosurveillance of acute myeloid leukemia in humans. Cancer Res 2009; 69: 1037–1045.

    CAS  PubMed  Google Scholar 

  46. Baessler T, Charton JE, Schmiedel BJ, Grunebach F, Krusch M, Wacker A et al. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood 2010; 115: 3058–3069.

    CAS  PubMed  Google Scholar 

  47. Coles SJ, Wang EC, Man S, Hills RK, Burnett AK, Tonks A et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia 2011; 25: 792–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cimino G, Amadori S, Cava MC, De Sanctis V, Petti MC, Di Gregorio AO et al. Serum interleukin-2 (IL-2), soluble IL-2 receptors and tumor necrosis factor-alfa levels are significantly increased in acute myeloid leukemia patients. Leukemia 1991; 5: 32–35.

    CAS  PubMed  Google Scholar 

  49. Lim SH, Worman CP, Jewell A, Goldstone AH . Production of tumour-derived suppressor factor in patients with acute myeloid leukaemia. Leuk Res 1991; 15: 263–268.

    CAS  PubMed  Google Scholar 

  50. Srivastava MD, Srivastava A, Srivastava BI . Soluble interleukin-2 receptor, soluble CD8 and soluble intercellular adhesion molecule-1 levels in hematologic malignancies. Leuk Lymphoma 1994; 12: 241–251.

    CAS  PubMed  Google Scholar 

  51. Bergmann L, Schui DK, Brieger J, Weidmann E, Mitrou PS, Hoelzer D . The inhibition of lymphokine-activated killer cells in acute myeloblastic leukemia is mediated by transforming growth factor-beta 1. Exp Hematol 1995; 23: 1574–1580.

    CAS  PubMed  Google Scholar 

  52. Schimmer AD, Pedersen IM, Kitada S, Eksioglu-Demiralp E, Minden MD, Pinto R et al. Functional blocks in caspase activation pathways are common in leukemia and predict patient response to induction chemotherapy. Cancer Res 2003; 63: 1242–1248.

    CAS  PubMed  Google Scholar 

  53. Del Poeta G, Bruno A . Del Principe MI, Venditti A, Maurillo L, Buccisano F et al., Deregulation of the mitochondrial apoptotic machinery and development of molecular targeted drugs in acute myeloid leukemia. Curr Cancer Drug Targets 2008; 8: 207–222.

    CAS  PubMed  Google Scholar 

  54. Ragusa M, Avola G, Angelica R, Barbagallo D, Guglielmino MR, Duro LR et al. Expression profile and specific network features of the apoptotic machinery explain relapse of acute myeloid leukemia after chemotherapy. BMC Cancer 2010; 10: 377.

    PubMed  PubMed Central  Google Scholar 

  55. Iijima N, Miyamura K, Itou T, Tanimoto M, Sobue R, Saito H . Functional expression of Fas (CD95) in acute myeloid leukemia cells in the context of CD34 and CD38 expression: possible correlation with sensitivity to chemotherapy. Blood 1997; 90: 4901–4909.

    CAS  PubMed  Google Scholar 

  56. Min YJ, Lee JH, Choi SJ, Chi HS, Lee JS, Kim WK et al. Prognostic significance of Fas (CD95) and TRAIL receptors (DR4/DR5) expression in acute myelogenous leukemia. Leuk Res 2004; 28: 359–365.

    CAS  PubMed  Google Scholar 

  57. Tourneur L, Delluc S, Levy V, Valensi F, Radford-Weiss I, Legrand O et al. Absence or low expression of fas-associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemotherapy and poor outcome. Cancer Res 2004; 64: 8101–8108.

    CAS  PubMed  Google Scholar 

  58. Riccioni R, Pasquini L, Mariani G, Saulle E, Rossini A, Diverio D et al. TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 2005; 90: 612–624.

    CAS  PubMed  Google Scholar 

  59. Chamuleau ME, Ossenkoppele GJ, van Rhenen A, van Dreunen L, Jirka SM, Zevenbergen A et al. High TRAIL-R3 expression on leukemic blasts is associated with poor outcome and induces apoptosis-resistance which can be overcome by targeting TRAIL-R2. Leuk Res 2011; 35: 741–749.

    CAS  PubMed  Google Scholar 

  60. Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L et al. NK cells and cancer. J Immunol 2007; 178: 4011–4016.

    CAS  PubMed  Google Scholar 

  61. Fauriat C, Moretta A, Olive D, Costello RT . Defective killing of dendritic cells by autologous natural killer cells from acute myeloid leukemia patients. Blood 2005; 106: 2186–2188.

    CAS  PubMed  Google Scholar 

  62. Ebata K, Shimizu Y, Nakayama Y, Minemura M, Murakami J, Kato T et al. Immature NK cells suppress dendritic cell functions during the development of leukemia in a mouse model. J Immunol 2006; 176: 4113–4124.

    CAS  PubMed  Google Scholar 

  63. Wang X, Zheng J, Liu J, Yao J, He Y, Li X et al. Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol 2005; 75: 468–476.

    PubMed  Google Scholar 

  64. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 2009; 15: 3325–3332.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shengui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z et al. Elevated frequencies of CD4+ CD25+ CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer 2011; 129: 1373–1381.

    Google Scholar 

  66. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005; 202: 1075–1085.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y . CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 2006; 176: 1582–1587.

    CAS  PubMed  Google Scholar 

  68. Barao I, Hanash AM, Hallett W, Welniak LA, Sun K, Redelman D et al. Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+CD25+ regulatory T cells. Proc Natl Acad Sci U S A 2006; 103: 5460–5465.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR . Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood 2011; 118: 5084–5095.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hallett WH, Ames E, Alvarez M, Barao I, Taylor PA, Blazar BR et al. Combination therapy using IL-2 and anti-CD25 results in augmented natural killer cell-mediated antitumor responses. Biol Blood Marrow Transplant 2008; 14: 1088–1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li Z, Qiao Y, Liu B, Laska EJ, Chakravarthi P, Kulko JM et al. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin Cancer Res 2005; 11: 4460–4468.

    CAS  PubMed  Google Scholar 

  72. Borg C, Terme M, Taieb J, Menard C, Flament C, Robert C et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 2004; 114: 379–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Menard C, Blay JY, Borg C, Michiels S, Ghiringhelli F, Robert C et al. Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res 2009; 69: 3563–3569.

    CAS  PubMed  Google Scholar 

  74. Vitale C, Chiossone L, Morreale G, Lanino E, Cottalasso F, Moretti S et al. Human natural killer cells undergoing in vivo differentiation after allogeneic bone marrow transplantation: analysis of the surface expression and function of activating NK receptors. Mol Immunol 2005; 42: 405–411.

    CAS  PubMed  Google Scholar 

  75. Savani BN, Mielke S, Adams S, Uribe M, Rezvani K, Yong AS et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia 2007; 21: 2145–2152.

    CAS  PubMed  Google Scholar 

  76. Pfeiffer MM, Feuchtinger T, Teltschik HM, Schumm M, Muller I, Handgretinger R et al. Reconstitution of natural killer cell receptors influences natural killer activity and relapse rate after haploidentical transplantation of T- and B-cell depleted grafts in children. Haematologica 2010; 95: 1381–1388.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pittari G, Fregni G, Roguet L, Garcia A, Vataire AL, Wittnebel S et al. Early evaluation of natural killer activity in post-transplant acute myeloid leukemia patients. Bone Marrow Transplant 2010; 45: 862–871.

    CAS  PubMed  Google Scholar 

  78. Dauguet N, Recher C, Demur C, Fournie JJ, Poupot M, Poupot R . Pre-eminence and persistence of immature natural killer cells in acute myeloid leukemia patients in first complete remission. Am J Hematol 2011; 86: 209–213.

    PubMed  Google Scholar 

  79. Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A . Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice. Leukemia 2005; 19: 2215–2222.

    CAS  PubMed  Google Scholar 

  80. Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J . CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 2009; 126: 458–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kosaka Y, Keating A . Natural Killer Cells for Cancer Immunotherapy. Experimental and Applied immunotherapy 2011; Part 2: 85–105.

    Google Scholar 

  82. Krebs P, Barnes MJ, Lampe K, Whitley K, Bahjat KS, Beutler B et al. NK-cell-mediated killing of target cells triggers robust antigen-specific T-cell-mediated and humoral responses. Blood 2009; 113: 6593–6602.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nausch N, Cerwenka A . NKG2D ligands in tumor immunity. Oncogene 2008; 27: 5944–5958.

    CAS  PubMed  Google Scholar 

  84. Waldhauer I, Steinle A . NK cells and cancer immunosurveillance. Oncogene 2008; 27: 5932–5943.

    CAS  PubMed  Google Scholar 

  85. Berneman ZN, Anguille S, Van Marck V, Schroyens WA, Van Tendeloo VF . Induction of complete remission of acute myeloid leukaemia by pegylated interferon-alpha-2a in a patient with transformed primary myelofibrosis. Br J Haematol 2010; 149: 152–155.

    PubMed  Google Scholar 

  86. Anguille S, Lion E, Willemen Y, Van Tendeloo VF, Berneman ZN, Smits EL . Interferon-α in acute myeloid leukemia: an old drug revisited. Leukemia 2011; 25: 739–748.

    CAS  PubMed  Google Scholar 

  87. Sutherland CL, Chalupny NJ, Schooley K, VandenBos T, Kubin M, Cosman D . UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol 2002; 168: 671–679.

    CAS  PubMed  Google Scholar 

  88. Zhang C, Zhang J, Sun R, Feng J, Wei H, Tian Z . Opposing effect of IFNgamma and IFNalpha on expression of NKG2 receptors: negative regulation of IFNgamma on NK cells. Int Immunopharmacol 2005; 5: 1057–1067.

    CAS  PubMed  Google Scholar 

  89. Coudert JD, Held W . The role of the NKG2D receptor for tumor immunity. Semin Cancer Biol 2006; 16: 333–343.

    CAS  PubMed  Google Scholar 

  90. Konjevic G, Mirjacic Martinovic K, Vuletic A, Radenkovic S . Novel aspects of in vitro IL-2 or IFN-alpha enhanced NK cytotoxicity of healthy individuals based on NKG2D and CD161 NK cell receptor induction. Biomed Pharmacother 2010; 64: 663–671.

    CAS  PubMed  Google Scholar 

  91. Blaser BW, Caligiuri MA . Autologous immune strategies to reduce the risk of leukemic relapse: consideration for IL-15. Best Pract Res Clin Haematol 2006; 19: 281–292.

    CAS  PubMed  Google Scholar 

  92. Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 2003; 100: 4120–4125.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu C, Wang S, Wang F, Chen Q, Peng S, Zhang Y et al. Increased frequencies of T helper type 17 cells in the peripheral blood of patients with acute myeloid leukaemia. Clin Exp Immunol 2009; 158: 199–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Romagne F, Andre P, Spee P, Zahn S, Anfossi N, Gauthier L et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 2009; 114: 2667–2677.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Velardi A, Ruggeri L, Mancusi A, Aversa F, Christiansen FT . Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol 2009; 21: 525–530.

    CAS  PubMed  Google Scholar 

  96. Alici E . IPH-2101, a fully human anti-NK-cell inhibitory receptor mAb for the potential treatment of hematological cancers. Curr Opin Mol Ther 2010; 12: 724–733.

    CAS  PubMed  Google Scholar 

  97. Green DR, Ferguson T, Zitvogel L, Kroemer G . Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009; 9: 353–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Langenkamp U, Siegler U, Jorger S, Diermayr S, Gratwohl A, Kalberer CP et al. Human acute myeloid leukemia CD34+CD38- stem cells are susceptible to allorecognition and lysis by single KIR-expressing natural killer cells. Haematologica 2009; 94: 1590–1594.

    PubMed  PubMed Central  Google Scholar 

  99. Gonzalez S, Lopez-Soto A, Suarez-Alvarez B, Lopez-Vazquez A, Lopez-Larrea C . NKG2D ligands: key targets of the immune response. Trends Immunol 2008; 29: 397–403.

    CAS  PubMed  Google Scholar 

  100. Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A . Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res 2007; 31: 1393–1402.

    CAS  PubMed  Google Scholar 

  101. Poggi A, Catellani S, Garuti A, Pierri I, Gobbi M, Zocchi MR . Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate. Leukemia 2009; 23: 641–648.

    CAS  PubMed  Google Scholar 

  102. Zimmer J, Michel T, Andres E, Hentges F . Up-regulation of NKG2D ligands by AML cells to increase sensitivity to NK cells: the tumour might strike back. Comment on ‘differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis’ by Rohner et al. [Leuk Res 2007; 31: 1393-402]. Leuk Res 2008; 32: 676–677.

    CAS  PubMed  Google Scholar 

  103. Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E et al. Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 2005; 106: 1711–1717.

    CAS  PubMed  Google Scholar 

  104. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 2005; 6: 928–937.

    CAS  PubMed  Google Scholar 

  105. Lundqvist A, Abrams SI, Schrump DS, Alvarez G, Suffredini D, Berg M et al. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res 2006; 66: 7317–7325.

    CAS  PubMed  Google Scholar 

  106. Hallett WH, Ames E, Motarjemi M, Barao I, Shanker A, Tamang DL et al. Sensitization of tumor cells to NK cell-mediated killing by proteasome inhibition. J Immunol 2008; 180: 163–170.

    CAS  PubMed  Google Scholar 

  107. Lion E, Smits EL, van Tendeloo V . NK cells: key to success of DC-based cancer vaccines? Submitted 2011.

  108. Moon Y, Kim Y, Kim M, Lim J, Kang CS, Kim WI et al. Plasma soluble interleukin-2 receptor (sIL-2R) levels in patients with acute leukemia. Ann Clin Lab Sci 2004; 34: 410–415.

    CAS  PubMed  Google Scholar 

  109. Orleans-Lindsay JK, Barber LD, Prentice HG, Lowdell MW . Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function--implications for the adoptive immunotherapy of leukaemia. Clin Exp Immunol 2001; 126: 403–411.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

EL is funded by a Stichting Emmanuel van der Schueren research grant of the Vlaamse Liga tegen Kanker (VLK), YW is funded by a PhD grant of the agency for Innovation by Science and Technology in Flanders (IWT), ELJS is postdoctoral researcher of the Research Foundation Flanders (FWO-Vlaanderen). This work was supported in part by research grants of the FWO-Vlaanderen (G.0082.08), the Belgian Foundation Against Cancer, the Methusalem financement program of the Flemish Government to the Antwerp University, the National Cancer Plan Program of the Ministry of Public Health (NCP action 29), the IWT-TBM (#080664) and the VLK (Project Biomarkers). The authors wish to thank Dr Sébastien Anguille (Belgium) for assistance in the design of figure 1 and for granting us the right to reproduce this artwork in the current publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Lion.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lion, E., Willemen, Y., Berneman, Z. et al. Natural killer cell immune escape in acute myeloid leukemia. Leukemia 26, 2019–2026 (2012). https://doi.org/10.1038/leu.2012.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.87

Keywords

This article is cited by

Search

Quick links