Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Abrogation of MLL–AF10 and CALM–AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l

Abstract

The t(10;11)(p12;q23) translocation and the t(10;11)(p12;q14) translocation, which encode the MLL (mixed lineage leukemia)–AF10 and CALM (clathrin assembly lymphoid myeloid leukemia)–AF10 fusion oncoproteins, respectively, are two recurrent chromosomal rearrangements observed in patients with acute myeloid leukemia and acute lymphoblastic leukemia. Here, we demonstrate that MLL–AF10 and CALM–AF10-mediated transformation is dependent on the H3K79 methyltransferase Dot1l using genetic and pharmacological approaches in mouse models. Targeted disruption of Dot1l using a conditional knockout mouse model abolished in vitro transformation of murine bone marrow cells and in vivo initiation and maintenance of MLL–AF10 or CALM–AF10 leukemia. The treatment of MLL–AF10 and CALM–AF10 transformed cells with EPZ004777, a specific small-molecule inhibitor of Dot1l, suppressed expression of leukemogenic genes such as Hoxa cluster genes and Meis1, and selectively impaired proliferation of MLL–AF10 and CALM–AF10 transformed cells. Pretreatment with EPZ004777 profoundly decreased the in vivo spleen-colony-forming ability of MLL–AF10 or CALM–AF10 transformed bone marrow cells. These results show that patients with leukemia-bearing chromosomal translocations that involve the AF10 gene may benefit from small-molecule therapeutics that inhibit H3K79 methylation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chaplin T, Bernard O, Beverloo HB, Saha V, Hagemeijer A, Berger R et al. The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood 1995; 86: 2073–2076.

    CAS  PubMed  Google Scholar 

  2. Beverloo HB, Le Coniat M, Wijsman J, Lillington DM, Bernard O, de Klein A et al. Breakpoint heterogeneity in t(10;11) translocation in AML-M4/M5 resulting in fusion of AF10 and MLL is resolved by fluorescent in situ hybridization analysis. Cancer Res 1995; 55: 4220–4224.

    CAS  PubMed  Google Scholar 

  3. Bohlander SK, Muschinsky V, Schrader K, Siebert R, Schlegelberger B, Harder L et al. Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia 2000; 14: 93–99.

    Article  CAS  PubMed  Google Scholar 

  4. Dreyling MH, Schrader K, Fonatsch C, Schlegelberger B, Haase D, Schoch C et al. MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood 1998; 91: 4662–4667.

    CAS  PubMed  Google Scholar 

  5. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ . Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995; 378: 505–508.

    Article  CAS  PubMed  Google Scholar 

  6. Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T . Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 1998; 92: 108–117.

    CAS  PubMed  Google Scholar 

  7. Milne TA, Kim J, Wang GG, Stadler SC, Basrur V, Whitcomb SJ et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell 2010; 38: 853–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yokoyama A, Cleary ML . Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 2008; 14: 36–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thiel AT, Blessington P, Zou T, Feather D, Wu X, Yan J et al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 2010; 17: 148–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002; 10: 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  12. Tebar F, Bohlander SK, Sorkin A . Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell 1999; 10: 2687–2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klebig ML, Wall MD, Potter MD, Rowe EL, Carpenter DA, Rinchik EM . Mutations in the clathrin-assembly gene Picalm are responsible for the hematopoietic and iron metabolism abnormalities in fit1 mice. Proc Natl Acad Sci USA 2003; 100: 8360–8365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deshpande AJ, Rouhi A, Lin Y, Stadler C, Greif PA, Arseni N et al. The clathrin-binding domain of CALM and the OM-LZ domain of AF10 are sufficient to induce acute myeloid leukemia in mice. Leukemia 2011; 25: 1718–1727.

    Article  CAS  PubMed  Google Scholar 

  15. Chaplin T, Ayton P, Bernard OA, Saha V, Della Valle V, Hillion J et al. A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukemia. Blood 1995; 85: 1435–1441.

    CAS  PubMed  Google Scholar 

  16. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    Article  CAS  PubMed  Google Scholar 

  17. Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 2010; 24: 574–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y . Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol 2006; 8: 1017–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 2002; 12: 1052–1058.

    Article  CAS  PubMed  Google Scholar 

  20. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 2008; 28: 2825–2839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011; 20: 66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caudell D, Zhang Z, Chung YJ, Aplan PD . Expression of a CALM-AF10 fusion gene leads to Hoxa cluster overexpression and acute leukemia in transgenic mice. Cancer Res 2007; 67: 8022–8031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 2005; 19: 1948–1957.

    Article  CAS  PubMed  Google Scholar 

  24. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011; 20: 53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang MJ, Wu H, Achille NJ, Reisenauer MR, Chou CW, Zeleznik-Le NJ et al. Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res 2010; 70: 10234–10242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jo SY, Granowicz EM, Maillard I, Thomas D, Hess JL . Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 2011; 117: 4759–4768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nguyen AT, Zhang Y . The diverse functions of Dot1 and H3K79 methylation. Genes Dev 2011; 25: 1345–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thompson CB . Attacking cancer at its root. Cell 2009; 138: 1051–1054.

    Article  CAS  PubMed  Google Scholar 

  29. Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK . The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci USA 1996; 93: 4804–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deshpande AJ, Cusan M, Rawat VP, Reuter H, Krause A, Pott C et al. Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. Cancer Cell 2006; 10: 363–374.

    Article  CAS  PubMed  Google Scholar 

  31. DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML . The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 2002; 99: 3780–3785.

    Article  CAS  PubMed  Google Scholar 

  32. Mulaw MA, Krause AJ, Deshpande AJ, Krause LF, Rouhi A, La Starza R et al. CALM/AF10-positive leukemias show upregulation of genes involved in chromatin assembly and DNA repair processes and of genes adjacent to the breakpoint at 10p12. Leukemia 2012; 26: 1012–1019.

    Article  CAS  PubMed  Google Scholar 

  33. Lin YH, Kakadia PM, Chen Y, Li YQ, Deshpande AJ, Buske C et al. Global reduction of the epigenetic H3K79 methylation mark and increased chromosomal instability in CALM-AF10-positive leukemias. Blood 2009; 114: 651–658.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ronald Mathieu and Mahnaz Pakhtinat for their excellent technical assistance with flow cytometry. This work was supported by grants from the National Cancer Institute (U01CA105423, R01CA140575), the American Cancer Society and the Leukemia and Lymphoma Society to SAA. AJD was supported by a grant to the American Cancer Society and the NCI Howard Temin Pathway to Independence Award. KMB was supported by NHLBI Career Development Award and funding from the William Lawrence and Blanche Hughes Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Armstrong.

Ethics declarations

Competing interests

EJO, SRD, VMR and RMP are employees of Epizyme, Inc. SAA is a consultant for Epizyme, Inc. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Deshpande, A., Banka, D. et al. Abrogation of MLL–AF10 and CALM–AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia 27, 813–822 (2013). https://doi.org/10.1038/leu.2012.327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.327

Keywords

This article is cited by

Search

Quick links