Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Immunity to adeno-associated virus vectors in animals and humans: a continued challenge

Abstract

Recombinant vectors based on adeno-associated virus (AAV) have been shown to stably express many genes in vivo without mounting immune responses to vectors or transgenes. Thus, AAV vectors have rapidly become the reagents of choice for therapeutic gene transfer. Yet one of the first translations of AAV gene therapy into humans unexpectedly resulted in only short-term expression of the therapeutic gene accompanied by transient but significant toxicity. Immune responses to the vector capsid were held accountable for these results, confirming that a detailed understanding of the interaction of AAV vectors with the immune system is of great importance for the safety and success of gene therapy applications. Most humans display naturally acquired immunity to AAV; circumventing neutralizing antibodies and memory T-cell responses is challenging, but not impossible. This review will evaluate the strategies that have been proposed to overcome such responses and summarize recent findings about the mechanisms and circumstances that lead to the activation of innate and adaptive immune responses to AAV vector components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Samulski RJ, Berns KI, Tan M, Muzyczka N . Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 1982; 79: 2077–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 1998; 72: 8568–8577.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA . Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001; 75: 6969–6976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 2006; 13: 77–87.

    Article  CAS  PubMed  Google Scholar 

  5. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A . Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999; 5: 71–77.

    Article  CAS  PubMed  Google Scholar 

  7. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  8. Di Pasquale G, Davidson BL, Stein CS, Martins I, Scudiero D, Monks A et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 2003; 9: 1306–1312.

    Article  CAS  PubMed  Google Scholar 

  9. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA . The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 2006; 80: 9831–9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 2005; 23: 1435–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller DG, Wang PR, Petek LM, Hirata RK, Sands MS, Russell DW . Gene targeting in vivo by adeno-associated virus vectors. Nat Biotechnol 2006; 24: 1022–1026.

    Article  CAS  PubMed  Google Scholar 

  12. Vasileva A, Jessberger R . Precise hit: adeno-associated virus in gene targeting. Nat Rev Microbiol 2005; 3: 837–847.

    Article  CAS  PubMed  Google Scholar 

  13. Mount JD, Herzog RW, Tillson DM, Goodman SA, Robinson N, McCleland ML et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 2002; 99: 2670–2676.

    Article  CAS  PubMed  Google Scholar 

  14. Mas A, Montane J, Anguela XM, Munoz S, Douar AM, Riu E et al. Reversal of type 1 diabetes by engineering a glucose sensor in skeletal muscle. Diabetes 2006; 55: 1546–1553.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang H, Lillicrap D, Patarroyo-White S, Liu T, Qian X, Scallan CD et al. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 2006; 108: 107–115.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14: 452–455.

    Article  CAS  PubMed  Google Scholar 

  17. Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 2004; 306: 1796–1799.

    Article  CAS  PubMed  Google Scholar 

  18. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  19. Hoebe K, Janssen E, Beutler B . The interface between innate and adaptive immunity. Nat Immunol 2004; 5: 971–974.

    Article  CAS  PubMed  Google Scholar 

  20. Meylan E, Tschopp J . Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 2006; 22: 561–569.

    Article  CAS  PubMed  Google Scholar 

  21. Meylan E, Tschopp J, Karin M . Intracellular pattern recognition receptors in the host response. Nature 2006; 442: 39–44.

    Article  CAS  PubMed  Google Scholar 

  22. Hensley SE, Amalfitano A . Toll-like receptors impact on safety and efficacy of gene transfer vectors. Mol Ther 2007; 15: 1417–1422.

    Article  CAS  PubMed  Google Scholar 

  23. Rautsi O, Lehmusvaara S, Salonen T, Hakkinen K, Sillanpaa M, Hakkarainen T et al. Type I interferon response against viral and non-viral gene transfer in human tumor and primary cell lines. J Gene Med 2007; 9: 122–135.

    Article  CAS  PubMed  Google Scholar 

  24. Chen H, Lilley CE, Yu Q, Lee DV, Chou J, Narvaiza I et al. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 2006; 16: 480–485.

    Article  CAS  PubMed  Google Scholar 

  25. Harris RS, Liddament MT . Retroviral restriction by APOBEC proteins. Nat Rev Immunol 2004; 4: 868–877.

    Article  CAS  PubMed  Google Scholar 

  26. Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA . Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 2002; 76: 4580–4590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaiss AK, Cotter MJ, White LR, Clark SA, Wong NC, Holers VM et al. Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol 2008; 82: 2727–2740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lutz HU, Jelezarova E . Complement amplification revisited. Mol Immunol 2006; 43: 2–12.

    Article  CAS  PubMed  Google Scholar 

  29. Schneider MC, Exley RM, Chan H, Feavers I, Kang YH, Sim RB et al. Functional significance of factor H binding to Neisseria meningitidis. J Immunol 2006; 176: 7566–7575.

    Article  CAS  PubMed  Google Scholar 

  30. Carroll MC . The complement system in regulation of adaptive immunity. Nat Immunol 2004; 5: 981–986.

    Article  CAS  PubMed  Google Scholar 

  31. Carroll MC . The complement system in B cell regulation. Mol Immunol 2004; 41: 141–146.

    Article  CAS  PubMed  Google Scholar 

  32. Kemper C, Atkinson JP . T-cell regulation: with complements from innate immunity. Nat Rev Immunol 2007; 7: 9–18.

    Article  CAS  PubMed  Google Scholar 

  33. Gao G, Lebherz C, Weiner DJ, Grant R, Calcedo R, McCullough B et al. Erythropoietin gene therapy leads to autoimmune anemia in macaques. Blood 2004; 103: 3300–3302.

    Article  CAS  PubMed  Google Scholar 

  34. Chenuaud P, Larcher T, Rabinowitz JE, Provost N, Cherel Y, Casadevall N et al. Autoimmune anemia in macaques following erythropoietin gene therapy. Blood 2004; 103: 3303–3304.

    Article  CAS  PubMed  Google Scholar 

  35. Greelish JP, Su LT, Lankford EB, Burkman JM, Chen H, Konig SK et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nat Med 1999; 5: 439–443.

    Article  CAS  PubMed  Google Scholar 

  36. Herzog RW, Hagstrom JN, Kung SH, Tai SJ, Wilson JM, Fisher KJ et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997; 94: 5804–5809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herzog RW, Yang EY, Couto LB, Hagstrom JN, Elwell D, Fields PA et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5: 56–63.

    Article  CAS  PubMed  Google Scholar 

  38. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998; 72: 4212–4223.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM . Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA 1999; 96: 3906–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Snyder RO, Spratt SK, Lagarde C, Bohl D, Kaspar B, Sloan B et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum Gene Ther 1997; 8: 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  41. Manning WC, Paliard X, Zhou S, Pat Bland M, Lee AY, Hong K et al. Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins B and D. J Virol 1997; 71: 7960–7962.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sarukhan A, Camugli S, Gjata B, von Boehmer H, Danos O, Jooss K . Successful interference with cellular immune responses to immunogenic proteins encoded by recombinant viral vectors. J Virol 2001; 75: 269–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herzog RW, Fields PA, Arruda VR, Brubaker JO, Armstrong E, McClintock D et al. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum Gene Ther 2002; 13: 1281–1291.

    Article  CAS  PubMed  Google Scholar 

  44. Cordier L, Gao GP, Hack AA, McNally EM, Wilson JM, Chirmule N et al. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum Gene Ther 2001; 12: 205–215.

    Article  CAS  PubMed  Google Scholar 

  45. Ziegler RJ, Lonning SM, Armentano D, Li C, Souza DW, Cherry M et al. AAV2 vector harboring a liver-restricted promoter facilitates sustained expression of therapeutic levels of alpha-galactosidase A and the induction of immune tolerance in Fabry mice. Mol Ther 2004; 9: 231–240.

    Article  CAS  PubMed  Google Scholar 

  46. Franco LM, Sun B, Yang X, Bird A, Zhang H, Schneider A et al. Evasion of immune responses to introduced human acid alpha-glucosidase by liver-restricted expression in glycogen storage disease type II. Mol Ther 2005; 12: 876–884.

    Article  CAS  PubMed  Google Scholar 

  47. Mingozzi F, Liu YL, Dobrzynski E, Kaufhold A, Liu JH, Wang Y et al. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest 2003; 111: 1347–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mingozzi F, Hasbrouck NC, Basner-Tschakarjan E, Edmonson SA, Hui DJ, Sabatino DE et al. Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood 2007; 110: 2334–2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang L, Cao O, Swalm B, Dobrzynski E, Mingozzi F, Herzog RW . Major role of local immune responses in antibody formation to factor IX in AAV gene transfer. Gene Therapy 2005; 12: 1453–1464.

    Article  CAS  PubMed  Google Scholar 

  50. Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 2006; 108: 3321–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moscioni D, Morizono H, McCarter RJ, Stern A, Cabrera-Luque J, Hoang A et al. Long-term correction of ammonia metabolism and prolonged survival in ornithine transcarbamylase-deficient mice following liver-directed treatment with adeno-associated viral vectors. Mol Ther 2006; 14: 25–33.

    Article  CAS  PubMed  Google Scholar 

  52. Lozier JN, Metzger ME, Donahue RE, Morgan RA . Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity. Blood 1999; 94: 3968–3975.

    CAS  PubMed  Google Scholar 

  53. Dobrzynski E, Mingozzi F, Liu YL, Bendo E, Cao O, Wang L et al. Induction of antigen-specific CD4+ T-cell anergy and deletion by in vivo viral gene transfer. Blood 2004; 104: 969–977.

    Article  CAS  PubMed  Google Scholar 

  54. Cao O, Dobrzynski E, Wang L, Nayak S, Mingle B, Terhorst C et al. Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 2007; 110: 1132–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun B, Bird A, Young SP, Kishnani PS, Chen YT, Koeberl DD . Enhanced response to enzyme replacement therapy in Pompe disease after the induction of immune tolerance. Am J Hum Genet 2007; 81: 1042–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoffman BE, Dobrzynski E, Wang L, Hirao L, Mingozzi F, Cao O et al. Muscle as a target for supplementary factor IX gene transfer. Hum Gene Ther 2007; 18: 603–613.

    Article  CAS  PubMed  Google Scholar 

  57. Xin KQ, Urabe M, Yang J, Nomiyama K, Mizukami H, Hamajima K et al. A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. Hum Gene Ther 2001; 12: 1047–1061.

    Article  CAS  PubMed  Google Scholar 

  58. Johnson PR, Schnepp BC, Connell MJ, Rohne D, Robinson S, Krivulka GR et al. Novel adeno-associated virus vector vaccine restricts replication of simian immunodeficiency virus in macaques. J Virol 2005; 79: 955–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xin KQ, Mizukami H, Urabe M, Toda Y, Shinoda K, Yoshida A et al. Induction of robust immune responses against human immunodeficiency virus is supported by the inherent tropism of adeno-associated virus type 5 for dendritic cells. J Virol 2006; 80: 11899–11910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin J, Zhi Y, Mays L, Wilson JM . Vaccines based on novel adeno-associated virus vectors elicit aberrant CD8+ T-cell responses in mice. J Virol 2007; 81: 11840–11849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin SW, Hensley SE, Tatsis N, Lasaro MO, Ertl HC . Recombinant adeno-associated virus vectors induce functionally impaired transgene product-specific CD8 T cells in mice. J Clin Invest 2007; 117: 3958–3970.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Logan GJ, Wang L, Zheng M, Cunningham SC, Coppel RL, Alexander IE . AAV vectors encoding malarial antigens stimulate antigen-specific immunity but do not protect from parasite infection. Vaccine 2007; 25: 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  63. Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 2006; 107: 1810–1817.

    Article  CAS  PubMed  Google Scholar 

  64. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  65. Halbert CL, Standaert TA, Wilson CB, Miller AD . Successful readministration of adeno-associated virus vectors to the mouse lung requires transient immunosuppression during the initial exposure. J Virol 1998; 72: 9795–9805.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chirmule N, Xiao W, Truneh A, Schnell MA, Hughes JV, Zoltick P et al. Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle. J Virol 2000; 74: 2420–2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murphy SL, Li H, Zhou S, Schlachterman A, High K . Prolonged susceptibility to antibody-mediated neutralization for adeno-associated vectors targeted to the liver. Mol Ther 2008; 16: 138–145.

    Article  CAS  PubMed  Google Scholar 

  68. Lochrie MA, Tatsuno GP, Christie B, McDonnell JW, Zhou S, Surosky R et al. Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. J Virol 2006; 80: 821–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huttner NA, Girod A, Perabo L, Edbauer D, Kleinschmidt JA, Buning H et al. Genetic modifications of the adeno-associated virus type 2 capsid reduce the affinity and the neutralizing effects of human serum antibodies. Gene Therapy 2003; 10: 2139–2147.

    Article  CAS  PubMed  Google Scholar 

  70. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV . Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 2006; 24: 198–204.

    Article  CAS  PubMed  Google Scholar 

  71. Peden CS, Burger C, Muzyczka N, Mandel RJ . Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 2004; 78: 6344–6359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grimm D, Kay MA . From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 2003; 3: 281–304.

    Article  CAS  PubMed  Google Scholar 

  73. Riviere C, Danos O, Douar AM . Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Therapy 2006; 13: 1300–1308.

    Article  CAS  PubMed  Google Scholar 

  74. Nathwani AC, Gray JT, McIntosh J, Ng CY, Zhou J, Spence Y et al. Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood 2007; 109: 1414–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Halbert CL, Miller AD, McNamara S, Emerson J, Gibson RL, Ramsey B et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: implications for gene therapy using AAV vectors. Hum Gene Ther 2006; 17: 440–447.

    Article  CAS  PubMed  Google Scholar 

  76. De BP, Heguy A, Hackett NR, Ferris B, Leopold PL, Lee J et al. High levels of persistent expression of alpha1-antitrypsin mediated by the nonhuman primate serotype rh.10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses. Mol Ther 2006; 13: 67–76.

    Article  CAS  PubMed  Google Scholar 

  77. Arbetman AE, Lochrie M, Zhou S, Wellman J, Scallan C, Doroudchi MM et al. Novel caprine adeno-associated virus (AAV) capsid (AAV-Go.1) is closely related to the primate AAV-5 and has unique tropism and neutralization properties. J Virol 2005; 79: 15238–15245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Limberis MP, Wilson JM . Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proc Natl Acad Sci USA 2006; 103: 12993–12998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nathwani AC, Davidoff AM, Hanawa H, Hu Y, Hoffer FA, Nikanorov A et al. Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood 2002; 100: 1662–1669.

    Article  CAS  PubMed  Google Scholar 

  80. Snyder RO . Adeno-associated virus-mediated gene delivery. J Gene Med 1999; 1: 166–175.

    Article  CAS  PubMed  Google Scholar 

  81. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007; 13: 419–422.

    Article  CAS  PubMed  Google Scholar 

  82. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF . Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000; 105: 1573–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF . Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76: 2043–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mingozzi F, High KA . Immune responses to AAV in clinical trials. Curr Gene Ther 2007; 7: 316–324.

    Article  CAS  PubMed  Google Scholar 

  85. Li C, Hirsch M, Asokan A, Zeithaml B, Ma H, Kafri T et al. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo. J Virol 2007; 81: 7540–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li H, Murphy SL, Giles-Davis W, Edmonson S, Xiang Z, Li Y et al. Pre-existing AAV capsid-specific CD8+ T cells are unable to eliminate AAV-transduced hepatocytes. Mol Ther 2007; 15: 792–800.

    Article  CAS  PubMed  Google Scholar 

  87. Vandenberghe LH, Wilson JM . AAV as an immunogen. Curr Gene Ther 2007; 7: 325–333.

    Article  CAS  PubMed  Google Scholar 

  88. Sabatino DE, Mingozzi F, Hui DJ, Chen H, Colosi P, Ertl HC et al. Identification of mouse AAV capsid-specific CD8+ T cell epitopes. Mol Ther 2005; 12: 1023–1033.

    Article  CAS  PubMed  Google Scholar 

  89. Vandenberghe LH, Wang L, Somanathan S, Zhi Y, Figueredo J, Calcedo R et al. Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nat Med 2006; 12: 967–971.

    Article  CAS  PubMed  Google Scholar 

  90. Thomas CE, Storm TA, Huang Z, Kay MA . Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang Z, Allen JM, Riddell SR, Gregorevic P, Storb R, Tapscott SJ et al. Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 2007; 18: 18–26.

    Article  PubMed  CAS  Google Scholar 

  92. Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 2007; 15: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  93. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–261.

    Article  CAS  PubMed  Google Scholar 

  94. Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A . Loss of Siglec expression on T lymphocytes during human evolution. Proc Natl Acad Sci USA 2006; 103: 7765–7770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. High KA . Update on progress and hurdles in novel genetic therapies for hemophilia. Hematology Am Soc Hematol Educ Program 2007; 2007: 466–472.

    Article  Google Scholar 

Download references

Acknowledgements

AKZ is the recipient of a Doctoral Research Award from the Heart and Stroke Foundation of Canada (HSFC). DAM is the recipient of an Alberta Heritage Foundation for Medical Research (AHFMR) Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Muruve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaiss, A., Muruve, D. Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Ther 15, 808–816 (2008). https://doi.org/10.1038/gt.2008.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.54

Keywords

This article is cited by

Search

Quick links