Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

CD47: a new player in phagocytosis and xenograft rejection

Abstract

Organ transplantation is limited by the availability of human donor organs. The transplantation of organs and tissues from other species (xenotransplantation) would supply an unlimited number of organs and offer many other advantages for which the pig has been identified as the most suitable source. However, the robust immune responses to xenografts remain a major obstacle to clinical application of xenotransplantation. The more vigorous xenograft rejection relative to allograft rejection is largely accounted for by the extensive genetic disparities between the donor and recipient. Xenografts activate host immunity not only by expressing immunogenic xenoantigens that provide the targets for immune recognition and rejection, but also by lacking ligands for the host immune inhibitory receptors. This review is focused on recent findings regarding the role of CD47, a ligand of an immune inhibitory receptor, signal regulatory protein alpha (SIRPĪ±), in phagocytosis and xenograft rejection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yang YG, Sykes M . Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol 2007; 7: 519ā€“531.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Cooper DK, Gollackner B, Sachs DH . Will the pig solve the transplantation backlog? Annu Rev Med 2002; 53: 133ā€“147.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002; 295: 1089ā€“1092.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 2002; 20: 251ā€“255.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 2005; 11: 29ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 2003; 299: 411ā€“414.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 2005; 11: 32ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Chen G, Qian H, Starzl T, Sun H, Garcia B, Wang X et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 2005; 11: 1295ā€“1298.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Habiro K, Sykes M, Yang YG . Induction of human T-cell tolerance to pig xenoantigens via thymus transplantation in mice with an established human immune system. Am J Transplant 2009; 9: 1324ā€“1329.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Dwyer KM, Robson SC, Nandurkar HH, Campbell DJ, Gock H, Murray-Segal LJ et al. Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J Clin Invest 2004; 113: 1440ā€“1446.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Watier H, Guillaumin JM, Vallee I, Thibault G, Gruel Y, Lebranchu Y et al. Human NK cell-mediated direct and IgG-dependent cytotoxicity against xenogeneic porcine endothelial cells. Transpl Immunol 1996; 4: 293ā€“299.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Kumagai-Braesch M, Satake M, Qian Y, Holgersson J, Moller E . Human NK cell and ADCC reactivity against xenogeneic porcine target cells including fetal porcine islet cells. Xenotransplantation 1998; 5: 132ā€“145.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Sasaki H, Xu XC, Smith DM, Howard T, Mohanakumar T . HLA-G expression protects porcine endothelial cells against natural killer cell-mediated xenogeneic cytotoxicity. Transplantation 1999; 67: 31ā€“37.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP . Role of CD47 as a marker of self on red blood cells. Science 2000; 288: 2051ā€“2054.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Blazar BR, Lindberg FP, Ingulli E, Panoskaltsis-Mortari A, Oldenborg PA, Iizuka K et al. CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J Exp Med 2001; 194: 541ā€“549.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Lindberg FP, Gresham HD, Schwarz E, Brown EJ . Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol 1993; 123: 485ā€“496.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Brown E, Hooper L, Ho T, Gresham H . Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol 1990; 111: 2785ā€“2794.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Jiang P, Lagenaur CF, Narayanan V . Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J Biol Chem 1999; 274: 559ā€“562.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Brown EJ, Frazier WA . Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 2001; 11: 130ā€“135.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Babic I, Schallhorn A, Lindberg FP, Jirik FR . SHPS-1 induces aggregation of Ba/F3 pro-B cells via an interaction with CD47. J Immunol 2000; 164: 3652ā€“3658.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Adams S, van der Laan LJ, Vernon-Wilson E, Renardel de Lavalette C, Dopp EA, Dijkstra CD et al. Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J Immunol 1998; 161: 1853ā€“1859.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Seiffert M, Brossart P, Cant C, Cella M, Colonna M, Brugger W et al. Signal-regulatory protein alpha (SIRPalpha) but not SIRPbeta is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38āˆ’ hematopoietic cells. Blood 2001; 97: 2741ā€“2749.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J, Ullrich A . A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 1997; 386: 181ā€“186.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Gordon S, Taylor PR . Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953ā€“964.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Gordon S . Pattern recognition receptors: doubling up for the innate immune response. Cell 2002; 111: 927ā€“930.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Barclay AN, Brown MH . The SIRP family of receptors and immune regulation. Nat Rev Immunol 2006; 6: 457ā€“464.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Ishikawa-Sekigami T, Kaneko Y, Okazawa H, Tomizawa T, Okajo J, Saito Y et al. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood 2006; 107: 341ā€“348.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H, Hagiwara T et al. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J Biol Chem 2002; 277: 39833ā€“39839.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005; 123: 321ā€“334.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Allen LB, Capps BE, Miller EC, Clemmons DR, Maile LA . Glucose-oxidized low-density lipoproteins enhance insulin-like growth factor I-stimulated smooth muscle cell proliferation by inhibiting integrin-associated protein cleavage. Endocrinology 2009; 150: 1321ā€“1329.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Alblas J, Honing H, de Lavalette CR, Brown MH, Dijkstra CD, van den Berg TK . Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol Cell Biol 2005; 25: 7181ā€“7192.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Latour S, Tanaka H, Demeure C, Mateo V, Rubio M, Brown EJ et al. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-alpha: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J Immunol 2001; 167: 2547ā€“2554.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009; 138: 271ā€“285.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Tsai RK, Discher DE . Inhibition of ā€œselfā€ engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol 2008; 180: 989ā€“1003.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Kong XN, Yan HX, Chen L, Dong LW, Yang W, Liu Q et al. LPS-induced down-regulation of signal regulatory protein {alpha} contributes to innate immune activation in macrophages. J Exp Med 2007; 204: 2719ā€“2731.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138: 286ā€“299.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617ā€“1628.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Uno S, Kinoshita Y, Azuma Y, Tsunenari T, Yoshimura Y, Iida S et al. Antitumor activity of a monoclonal antibody against CD47 in xenograft models of human leukemia. Oncol Rep 2007; 17: 1189ā€“1194.

    CASĀ  PubMedĀ  Google ScholarĀ 

  39. Kikuchi Y, Uno S, Kinoshita Y, Yoshimura Y, Iida S, Wakahara Y et al. Apoptosis inducing bivalent single-chain antibody fragments against CD47 showed antitumor potency for multiple myeloma. Leuk Res 2005; 29: 445ā€“450.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Mateo V, Lagneaux L, Bron D, Biron G, Armant M, Delespesse G et al. CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nat Med 1999; 5: 1277ā€“1284.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA 2009; 106: 14016ā€“14021.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Kim MJ, Lee JC, Lee JJ, Kim S, Lee SG, Park SW et al. Association of CD47 with natural killer cell-mediated cytotoxicity of head-and-neck squamous cell carcinoma lines. Tumour Biol 2008; 29: 28ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Ide K, Ohdan H, Kobayashi T, Hara H, Ishiyama K, Asahara T . Antibody- and complement-independent phagocytotic and cytolytic activities of human macrophages toward porcine cells. Xenotransplantation 2005; 12: 181ā€“188.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  44. Wallgren AC, Karlsson-Parra A, Korsgren O . The main infiltrating cell in xenograft rejection is a CD4+ macrophage and not a T lymphocyte. Transplantation 1995; 60: 594-601.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Wu G, Korsgren O, Zhang J, Song Z, van Rooijen N, Tibell A . Pig islet xenograft rejection is markedly delayed in macrophage-depleted mice: a study in streptozotocin diabetic animals. Xenotransplantation 2000; 7: 214ā€“220.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Yi S, Hawthorne WJ, Lehnert AM, Ha H, Wong JK, van Rooijen N et al. T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts. J Immunol 2003; 170: 2750ā€“2758.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Soderlund J, Wennberg L, Castanos-Velez E, Biberfeld P, Zhu S, Tibell A et al. Fetal porcine islet-like cell clusters transplanted to cynomolgus monkeys: an immunohistochemical study. Transplantation 1999; 67: 784ā€“791.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Burlak C, Twining LM, Rees MA . Terminal sialic acid residues on human glycophorin A are recognized by porcine kupffer cells. Transplantation 2005; 80: 344ā€“352.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Jin R, Greenwald A, Peterson MD, Waddell TK . Human monocytes recognize porcine endothelium via the interaction of galectin 3 and alpha-GAL. J Immunol 2006; 177: 1289ā€“1295.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Wang H, VerHalen J, Madariaga ML, Xiang S, Wang S, Lan P et al. Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood 2007; 109: 836ā€“842.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T et al. Role for CD47ā€“SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci USA 2007; 104: 5062ā€“5066.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Abe M, Cheng J, Qi J, Glaser RM, Thall AD, Sykes M et al. Elimination of porcine hemopoietic cells by macrophages in mice. J Immunol 2002; 168: 621ā€“628.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Subramanian S, Parthasarathy R, Sen S, Boder ET, Discher DE . Species- and cell type-specific interactions between CD47 and human SIRPalpha. Blood 2006; 107: 2548ā€“2556.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8: 1313ā€“1323.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Hatherley D, Harlos K, Dunlop DC, Stuart DI, Barclay AN . The structure of the macrophage signal regulatory protein alpha (SIRPalpha) inhibitory receptor reveals a binding face reminiscent of that used by T cell receptors. J Biol Chem 2007; 282: 14567ā€“14575.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Sano S, Ohnishi H, Kubota M . Gene structure of mouse BIT/SHPS-1. Biochem J 1999; 344: 667ā€“675.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Nakaishi A, Hirose M, Yoshimura M, Oneyama C, Saito K, Kuki N et al. Structural insight into the specific interaction between murine SHPS-1/SIRP alpha and its ligand CD47. J Mol Biol 2008; 375: 650ā€“660.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Wang Y, Wang H, Wang S, Fu Y, Yang YG . Survival and function of CD47-deficient thymic grafts in mice. Xenotransplantation 2010; 17: 160ā€“165.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors thank Dr Emmanuel Zorn for critical reading of the manuscript. The work from the authors' laboratory discussed in this review was supported by grants from NIH (RO1 AI064569 and PO1 AI045897), JDRF (1-2005-72) and ROTRF (#848155553).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-Alvarez, N., Yang, YG. CD47: a new player in phagocytosis and xenograft rejection. Cell Mol Immunol 8, 285ā€“288 (2011). https://doi.org/10.1038/cmi.2010.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.83

Keywords

This article is cited by

Search

Quick links