Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta

Abstract

Trophoblast cells of the placenta are established at the blastocyst stage and differentiate into specialized subtypes after implantation1,2. In mice, the outer layer of the placenta consists of trophoblast giant cells that invade the uterus and promote maternal blood flow to the implantation site by producing cytokines with angiogenic3 and vasodilatory4 actions. The innermost layer, called the labyrinth, consists of branched villi that provide a large surface area for nutrient transport and are composed of trophoblast cells and underlying mesodermal cells derived from the allantois. The chorioallantoic villi develop after embryonic day (E) 8.5 through extensive folding and branching of an initially flat sheet of trophoblast cells, the chorionic plate, in response to contact with the allantois. We show here that Gcm1, encoding the transcription factor glial cells missing-1 (Gcm1), is expressed in small clusters of chorionic trophoblast cells at the flat chorionic plate stage and at sites of chorioallantoic folding and extension when morphogenesis begins. Mutation of Gcm1 in mice causes a complete block to branching of the chorioallantoic interface, resulting in embryonic mortality by E10 due to the absence of the placental labyrinth. In addition, chorionic trophoblast cells in Gcm1-deficient placentas do not fuse to form syncytiotrophoblast. Abnormal development of placental villi is frequently associated with fetal death and intrauterine growth restriction in humans, and our studies provide the earliest molecular insight into this aspect of placental development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphogenesis and expression of Gcm1 in mouse placenta during early labryinth development.
Figure 2: Function of Gcm1 in the mouse placenta.
Figure 3: Failure of chorioallantoic placental morphogenesis in Gcm1-deficient embryos.
Figure 4: Failure of syncytiotrophoblast differentiation and tissue morphogenesis, but normal chorionic trophoblast differentiation, in Gcm1-deficient embryos.

Similar content being viewed by others

References

  1. Cross, J.C. Genetic insights into trophoblast differentiation and placental morphogenesis. Semin. Cell Dev. Biol. (in press).

  2. Cross, J.C., Werb, Z. & Fisher, S.J. Implantation and the placenta: key pieces of the development puzzle. Science 266, 1508–1518 (1994).

    Article  CAS  Google Scholar 

  3. Jackson, D., Volpert, O.V., Bouck, N. & Linzer, D.I. Stimulation and inhibition of angiogenesis by placental proliferin and proliferin-related protein. Science 266, 1581–1584 (1994).

    Article  CAS  Google Scholar 

  4. Yotsumoto, S. et al. Expression of adrenomedullin, a hypotensive peptide, in the trophoblast giant cells at the embryo implantation site in mouse. Dev. Biol. 203, 264–275 (1998).

    Article  CAS  Google Scholar 

  5. Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    Article  CAS  Google Scholar 

  6. Rossant, J. & Ofer, L. Properties of extra-embryonic ectoderm isolated from postimplantation mouse embryos. J. Embryol. Exp. Morphol. 39, 183–194 (1977).

    CAS  PubMed  Google Scholar 

  7. Guillemot, F., Nagy, A., Auerbach, A., Rossant, J. & Joyner, A.L. Essential role of Mash-2 in extraembryonic development. Nature 371, 333–336 (1994).

    Article  CAS  Google Scholar 

  8. Riley, P., Anson-Cartwright, L. & Cross, J.C. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nature Genet. 18, 271–275 (1998).

    Article  CAS  Google Scholar 

  9. Scott, I.C., Anson-Cartwright, L., Riley, P., Reda, D. & Cross, J.C. The Hand1 basic helix-loop-helix transcription factor regulates trophoblast giant cell differentitation via multiple mechanisms. Mol. Cell. Biol. 20, 530–541 (2000).

    Article  CAS  Google Scholar 

  10. Basyuk, E. et al. The murine Gcm1 gene is expressed in a subset of placental trophoblast cells. Dev. Dyn. 214, 303–311 (1999).

    Article  CAS  Google Scholar 

  11. Hosoya, T., Takizawa, K., Nitta, K. & Hotta, Y. Glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82, 1025–1036 (1995).

    Article  CAS  Google Scholar 

  12. Jones, B.W., Fetter, R.D., Tear, G. & Goodman, C.S. Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82, 1013–1023 (1995).

    Article  CAS  Google Scholar 

  13. Bernardoni, R., Vivancos, B. & Giangrande, A. Glide/gcm is expressed and required in the scavenger cell lineage. Dev. Biol. 191, 118–130 (1997).

    Article  CAS  Google Scholar 

  14. Bernardoni, R., Miller, A.A. & Giangrande, A. Glial differentiation does not require a neural ground state. Development 125, 3189–3200 (1998).

    CAS  PubMed  Google Scholar 

  15. Altshuller, Y., Copeland, N.G., Gilbert, D.J., Jenkins, N.A. & Frohman, M.A. Gcm1, a mammalian homolog of Drosophila Glial Cells Missing. FEBS Lett. 393, 201–204 (1996).

    Article  CAS  Google Scholar 

  16. Akiyama, Y., Hosoya, T., Poole, A.M. & Hotta, Y. The Gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proc. Natl Acad. Sci. USA 93, 14912–14916 (1996).

    Article  CAS  Google Scholar 

  17. Kim, J. et al. Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc. Natl Acad. Sci. USA 95, 12364–12369 (1998).

    Article  CAS  Google Scholar 

  18. Janatpour, M.J. et al. A repertoire of differentially expressed transcription factors that offers insight into mechanisms of human cytotrophoblast differentiation. Dev. Genet. 25, 146–157 (1999).

    Article  CAS  Google Scholar 

  19. Hernandez-Verdun, D. Morphogenesis of the syncytium in the mouse placenta. Ultrastructural study. Cell Tissue Res. 148, 381–396 (1974).

    Article  CAS  Google Scholar 

  20. Hunter, P.J., Swanson, B.J., Haendel, M.A., Lyons, G.E. & Cross, J.C. Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. Development 126, 1247–1258 (1999).

    CAS  PubMed  Google Scholar 

  21. Cross, J.C. Trophoblast function in normal and preeclamptic pregnancy. Fetal Maternal Med. Rev. 8, 57–66 (1996).

    Article  Google Scholar 

  22. Khong, T.Y., De Wolf, F., Robertson, W.B. & Brosens, I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br. J. Obstet. Gynaecol. 93, 1049–1059 (1986).

    Article  CAS  Google Scholar 

  23. Krebs, C. et al. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am. J. Obstet. Gynecol. 175, 1534–1542 (1996).

    Article  CAS  Google Scholar 

  24. Wurst, W. & Joyner, A. Production of targeted embryonic stem cell clones. in Gene Targeting: A Practical Approach (ed. Joyner, A.) 33–61 (Oxford University Press, Oxford, 1993).

    Google Scholar 

  25. Colosi, P., Talamantes, F. & Linzer, D.I. Molecular cloning and expression of mouse placental lactogen I complementary deoxyribonucleic acid. Mol. Endocrinol. 1, 767–776 (1987).

    Article  CAS  Google Scholar 

  26. Lescisin, K.R., Varmuza, S. & Rossant, J. Isolation and characterization of a novel trophoblast-specific cDNA in the mouse. Genes Dev. 2, 1639–1646 (1988).

    Article  CAS  Google Scholar 

  27. Luo, J. et al. Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-β. Nature 388, 778–782 (1997).

    Article  CAS  Google Scholar 

  28. Beck, F., Erler, T., Russell, A. & James, R. Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev. Dyn. 204, 219–227 (1995).

    Article  CAS  Google Scholar 

  29. Morasso, M.I., Grinberg, A., Robinson, G., Sargent, T.D. & Mahon, K.A. Placental failure in mice lacking the homeobox gene Dlx3. Proc. Natl Acad. Sci. USA 96, 162–167 (1999).

    Article  CAS  Google Scholar 

  30. Jacquemin, P. et al. Differential expression of the TEF family of transcription factors in the murine placenta and during differentiation of primary human trophoblasts in vitro. Dev. Dyn. 212, 423–436 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Basyuk for providing genomic clones; Y. Lu for histological sections; and A. Bernstein, J. Kingdom and J. Rossant for critical comments on the manuscript. The work was supported by grants from the MRC of Canada (to J.C.C.) and the NIH (to S.J.F. and to R.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Cross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anson-Cartwright, L., Dawson, K., Holmyard, D. et al. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet 25, 311–314 (2000). https://doi.org/10.1038/77076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing