Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins

Abstract

A number of enzymes recognize and repair DNA lesions1. The DNA-mismatch repair system corrects base–base mismatches andsmall loops, whereas the nucleotide-excision repair systemremoves pyrimidine dimers and other helix-distorting lesions. DNA molecules with mismatches or loops can arise as aconsequence of heteroduplex formation during meiotic recombination2. In the yeast Saccharomyces cerevisiae, repair of mismatches results in gene conversion or restoration, and failure to repair the mismatch results in post-meiotic segregation (PMS) (Fig. 1). The ratio of gene-conversion to PMS events reflects the efficiency of DNA repair3,4. By examining the PMS patterns in yeast strains heterozygous for a mutant allele with a 26-base-pair insertion, we find that the repair of 26-base loops involves Msh2 (a DNA-mismatch repair protein) and Rad1 (a protein required for nucleotide-excision repair).

Paired meiotic chromosomes are shown, with each chromosome being double-stranded. Centromeres are indicated by black and white ovals; rectangles depict genes with mutant insertions shown in black. a, Tetrads in which a wild-type strand is non-reciprocally donated to a mutant gene, or b, in which a mutant DNA strand is non-reciprocally donated to a wild-type gene4. The resulting heteroduplexes contain DNA loops, representing sequences present in the mutant gene but absent in the wild-type gene. Repair of the mismatches can occur either by excision of the loop (followed by resynthesis using the wild-type strand as a template), or by excision of the sequences opposite the loop (followed by resynthesis using the mutant strand as a template). Failure to repair the loop leads to 5 : 3 or 3 : 5 postmeiotic segregation (PMS).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis 1–698 (ASM, Washington DC, (1995)).

    Google Scholar 

  2. Modrich, P. & Lahue, R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65, 101–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Fogel, S., Mortimer, R. K. & Lusnak, K. in The Molecular and Cellular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 289–339 (Cold Spring Harbor Laboratory Press, New York, (1981)).

    Google Scholar 

  4. Petes, T. D., Malone, R. E. & Symington, L. S. in The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics (eds Broach, J. R., Pringle, J. R. & Jones, E. W.) 407–521 (Cold Spring Harbor Laboratory Press, New York, (1991)).

    Google Scholar 

  5. Nag, D. K., White, M. A. & Petes, T. D. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature 340, 318–320 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Marsischky, G. T., Filosi, N., Kane, M. F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10, 407–420 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, R. E., Kovvali, G. K., Prakash, L. & Prakash, S. Requirement of the yeast MSH3 and MSH6 genes for MSH2 -dependent genomic stability. J. Biol. Chem. 271, 7285–7288 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Detloff, P., Sieber, J. & Petes, T. D. Repair of specific base pair mismatches formed during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 737–745 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alani, E., Reenan, R. A. G. & Kolodner, R. D. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137, 19–39 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. DiCaprio, L. & Hastings, P. J. Post-meiotic segregation in strains of Saccharomyces cerevisiae unable to excise pyrimidine dimers. Mutat. Res. 37, 137–140 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Dowling, E. L., Maloney, D. H. & Fogel, S. Meiotic recombination and sporulation in repair-deficient strains of yeast. Genetics 109, 283–302 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Resnick, M. A., Game, J. C. & Stasiewicz, S. Genetic effect of UV irradiation on excision-proficient and -deficient yeast during meiosis. Genetics 104, 603–618 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Reenan, R. A. G. & Kolodner, R. D. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132, 975–985 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Alani, E., Chi, N.-W. & Kolodner, R. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and insertions. Genes Dev. 9, 234–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Sia, E. A., Kokoska, R. J., Dominska, M., Greenwell, P. & Petes, T. D. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol. Cell. Biol. 17, 2851–2858 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tran, H. T., Gordenin, D. A. & Resnick, M. A. The prevention of repeat-associated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions. Genetics 143, 1579–1587 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Duckett, D. R. et al. Human MutSα recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc. Natl Acad. Sci. USA 93, 6443–6447 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Mello, J. A., Acharya, S., Fishel, R. & Essigman, J. M. The mismatch repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem. Biol. 3, 579–589 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, J.-C., Hsu, D. S., Kazantsev, A. & Sancar, A. Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc. Natl Acad. Sci. USA 91, 12213–12217 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Saparbaev, M., Prakash, L. & Prakash, S. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1–RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142, 727–736 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sekelsky, J. J., McKim, K. S., chin, G. M. & Hawley, R. S. The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1. Genetics 141, 619–627 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carpenter, A. T. C. Mismatch repair, gene conversion, and crossing-over in two recombination-defective mutants of Drosophila. Proc. Natl Acad. Sci. USA 79, 5961–5965 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Stapleton, A. & Petes, T. D. The Tn3-β-lactamase gene acts as a hotspot for meiotic recombiantion in yeast. Genetics 127, 39–51 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Boeke, J. D., Lacroute, F. & Fink, G. R. Apositive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345–346 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH. We thank R. Borts and J. Haber for communicating unpublished information, and M. Dominska, M. Mears, R. Pukkila-Worley and Q.-Q. Fan for help with tetrad analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Kirkpatrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkpatrick, D., Petes, T. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature 387, 929–931 (1997). https://doi.org/10.1038/43225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43225

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing