Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins

A Corrigendum to this article was published on 02 May 2002

Abstract

Ubiquitination is a post-translation modification in which ubiquitin chains or single ubiquitin molecules are appended to target proteins, giving rise to poly- or monoubiquitination, respectively1,2,3,4. Polyubiquitination targets proteins for destruction by the proteasome. The role of monoubiquitination is less understood, although a function in membrane trafficking is emerging, at least in yeast1,3,5. Here we report that a short amino-acid stretch at the carboxy-termini of the monoubiquitinated endocytic proteins Eps15 and eps15R is indispensable for their monoubiquitination. A similar sequence, also required for this modification, is found in other cytosolic endocytic proteins, such as epsins and Hrs. These sequences comprise a protein motif, UIM (ref. 6), which has been proposed to bind to ubiquitin. We confirm this for the UIMs of eps15, eps15R, epsins and Hrs. Thus, the same motif in several endocytic proteins is responsible for ubiquitin recognition and monoubiquitination. Our results predict the existence of a UIM:ubiquitin-based intracellular network. Eps15/eps15R, epsins and Hrs may function as adaptors between ubiquitinated membrane cargo and either the clathrin coat or other endocytic scaffolds. In addition, through their own ubiquitination, they may further contribute to the amplification of this network in the endocytic pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A motif in eps15 and eps15R responsible for monoubiquitination.
Figure 2: In vivo mapping of the motif required for monoubiquitination of eps15 and eps15R.
Figure 3: Monoubiquitination of other proteins displaying the ‘monoubiquitination’ motif.
Figure 4: Ubiquitin-binding properties of UIMs.
Figure 5: The UIM of eps15 is necessary for monoubiquitination by Nedd4.

Similar content being viewed by others

References

  1. Hicke, L. A new ticket for entry into budding vesicles—ubiquitin. Cell 106, 527–530 (2001).

    Article  CAS  Google Scholar 

  2. Weissman, A. M. Themes and variations on ubiquitination. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001).

    Article  CAS  Google Scholar 

  3. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  4. Laney, J. D. & Hochstrasser, M. Substrate targeting in the ubiquitin system. Cell 97, 427–430 (1999).

    Article  CAS  Google Scholar 

  5. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  Google Scholar 

  6. Hofmann, K. & Falquet, l. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  Google Scholar 

  7. van Delft, S., Govers, R., Strous, G J., Verkleij, A. J. & van Bergen en Henegouwen, P. M. Epidermal growth factor induces ubiquitination of Eps15. J. Biol. Chem. 272, 14013–14016 (1997).

    Article  CAS  Google Scholar 

  8. Coda, L. et al. Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization. J. Biol. Chem. 273, 3003–3012 (1998).

    Article  CAS  Google Scholar 

  9. Santolini, E., Salcini, A. E., Kay, B. K., Yamabhai, M. & Di Fiore, P. P. The EH network. Exp. Cell Res. 253, 186–209 (1999).

    Article  CAS  Google Scholar 

  10. Wong, W. T. et al. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proc. Natl Acad. Sci. USA 92, 9530–9534 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Benmerah, A., Begue, B., Dautry-Varsat, A. & Cerf-Bensussan, N. The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps15 protein. J. Biol. Chem. 271, 12111–12116 (1996).

    Article  CAS  Google Scholar 

  12. Iannolo, G. et al. Mapping of the molecular determinants involved in the interaction between eps15 and AP-2. Cancer Res. 57, 240–245 (1997).

    CAS  PubMed  Google Scholar 

  13. Chen, H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Komada, M. & Kitamura, N. Growth factor-induced tyrosine phosphorylation of Hrs, a novel 115-kilodalton protein with a structurally conserved putative zinc finger domain. Mol. Cell Biol. 15, 6213–6221 (1995).

    Article  CAS  Google Scholar 

  15. Young, P., Deveraux, Q., Beal, R. E., Pickart, C. M. & Rechsteiner, M. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273, 5461–5467 (1998).

    Article  CAS  Google Scholar 

  16. van Nocker, S. et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell Biol. 16, 6020–6028 (1996).

    Article  CAS  Google Scholar 

  17. Beal, R., Deveraux, Q., Xia, G., Rechsteiner, M. & Pickart, C. Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. Proc. Natl Acad. Sci. USA 93, 861–866 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061 (1994).

    CAS  PubMed  Google Scholar 

  19. Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA 92, 2563–2567 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Staub, O. et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 15, 2371–2380 (1996).

    Article  CAS  Google Scholar 

  21. Wang, G. et al. Localization of the Rsp5p ubiquitin-protein ligase at multiple sites within the endocytic pathway. Mol. Cell Biol. 21, 3564–3575 (2001).

    Article  CAS  Google Scholar 

  22. Dunn, R. & Hicke, L. Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis. J. Biol. Chem. 276, 25974–25981 (2001).

    Article  CAS  Google Scholar 

  23. Dunn, R. & Hicke, L. Domains of the Rsp5 ubiquitin-protein ligase required for receptor-mediated and fluid-phase endocytosis. Mol. Biol. Cell 12, 421–435 (2001).

    Article  CAS  Google Scholar 

  24. Gagny, B. et al. A novel EH domain protein of Saccharomyces cerevisiae, Ede1p, involved in endocytosis. J. Cell. Sci. 113, 3309–3319 (2000).

    CAS  PubMed  Google Scholar 

  25. Jensen, J. P., Bates, P. W., Yang, M., Vierstra, R. D. & Weissman, A. M. Identification of a family of closely related human ubiquitin conjugating enzymes. J. Biol. Chem. 270, 30408–30414 (1995).

    Article  CAS  Google Scholar 

  26. Itoh, T. et al. Role of the ENTH domain in phosphatidyl inositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    Article  ADS  CAS  Google Scholar 

  27. Patki, V., Lawe, D. C., Corvera, AS., Virbasius, J. V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature 394, 433–434 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 (1998).

    Article  CAS  Google Scholar 

  29. Gaullier, J. M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Avantaggiati, M. L. et al. The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J. 15, 2236–2248 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Asao and A. Bean for Hrs constructs, I. Berdo for E1 purification, G. F. Draetta for UbcH5B, Nedd4 and His-Ub constructs, M. Sudol for γEnaC constructs, and G. Gill for B82L cells. We thank A. Musacchio for comments that improved the manuscript. We also thank S. Confalonieri for assistance with biocomputing. This work was supported by grants from the Associazione Italiana Ricerca sul Cancro, the Telethon Foundation, the CNR (Progetto Biotecnologie), and the EC (V framework).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Di Fiore.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polo, S., Sigismund, S., Faretta, M. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002). https://doi.org/10.1038/416451a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416451a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing