Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese

Abstract

The mitochondrial uncoupling protein (UCP) in the mitochondrial inner membrane of mammalian brown adipose tissue generates heat by uncoupling oxidative phosphorylation1. This process protects against cold2 and regulates energy balance3. Manipulation of thermogenesis could be an effective strategy against obesity4–9. Here we determine the role of UCP in the regulation of body mass by targeted inactivation of the gene encoding it. We find that UCP-deficient mice consume less oxygen after treatment with a β3-adrenergic-receptor agonist and that they are sensitive to cold, indicating that their thermo-regulation is defective. However, this deficiency caused neither hyperphagia nor obesity in mice fed on either a standard or a high-fat diet. We propose that the loss of UCP may be compensated by UCP2, a newly discovered homologue of UCP; this gene is ubiquitously expressed and is induced in the brown fat of UCP-deficient mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicholls, D. G. & Locke, R. M. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1–64 (1984).

    Article  CAS  Google Scholar 

  2. Foster, D. O. & Frydman, M. L. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can. J. Physiol. Pharmacol. 57, 257–270 (1979).

    Article  CAS  Google Scholar 

  3. Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Champigny, O. et al. B3-Adrenergic receptor stimualtion restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc. Natl Acad. Sci. USA 88, 10774–10777 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Himms-Hagen, J. et al. Effect of CL-316,243, a thermogenic B3-agonist, on energy balance and brown and white adipose tissues in rat. Am. J. Physiol. 266, R1371–R1382 (1994).

    CAS  PubMed  Google Scholar 

  6. Kozak, L. P., Kozak, U. C. & Clarke, G. T. Abnormal brown and white fat development in transgenic mice overexpressing glycerol 3-phosphate dehydrogenase. Genes Dev. 5, 2256–2264 (1991).

    Article  CAS  Google Scholar 

  7. Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L. P. Expression of the mitochondrial uncoupling protein gene from the aP2 promoter prevents genetic obesity. J. Clin. Invest. 96, 2914–2923 (1995).

    Article  CAS  Google Scholar 

  9. Cummings, D. E. et al. Genetically lean mice result from targeted disruption of protein kinase A. Nature 382, 622–626 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryoderived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  11. Gossler, A., Doestchman, T. C., Korn, R., Serfling, E. & Kemler, R. Transgenesis by means of blastocystderived embryonic stem cell lines. Proc. Natl Acad. Sci. USA 83, 9065–9069 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Kozak, L. P., Britton, J. H., Kozak, U. C. & Wells, J. M. The mitochondrial uncoupling protein gene. Correlation of exon structure to transmembrane domains. J. Biol. Chem. 263, 12274–12277 (1988).

    CAS  PubMed  Google Scholar 

  13. Cannon, B. & Vogel, G. The mitochondrial ATPase of brown adipose tissue. Purification and comparison with mitochondria ATPase from beef heart. FEBS Lett. 76, 284–289 (1977).

    Article  CAS  Google Scholar 

  14. Susulic, V. S. et al. Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem 270, 29483–29492 (1995).

    Article  CAS  Google Scholar 

  15. Holloway, B. R. et al. ICI D7114 a novel selective β-adrenoceptor agonist selectively stimulates brown fat and increases whole body oxygen consumption. Br. J. Pharmacol. 104, 97–104 (1991).

    Article  CAS  Google Scholar 

  16. Hamann, A., Flier, J. S. & Lowell, B. B. Decreased brown fat markedly enhances susceptibility to dietinduced obesity, diabetes and hyperlipidemia . Endocrinology 137, 21–29 (1996).

    Article  CAS  Google Scholar 

  17. Billington, C. J., Briggs, J. E., Grace, M. & Levine, A. S. Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am. J. Physiol. 266, R1765–R1770 (1991).

    Google Scholar 

  18. Koza, R. A. et al. Sequence and tissue-dependent RNA expression of mouse FAD-linked glycerol-3-phosphate dehydrogenase. Arch. Biochem. Biophys. 336, 97–104 (1996).

    Article  CAS  Google Scholar 

  19. Melnyk, A., Harper, M.-E. & Himms-Hagen, J. Raising at thermoneutrality prevents obesity and hyperphagia in brown adipose tissue-ablated transgenic mice. Am. J. Physiol. 272, R1088–R1093 (1997).

    CAS  PubMed  Google Scholar 

  20. Leibel, R. L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332, 621–628 (1995).

    Article  CAS  Google Scholar 

  21. Lean, M. E. J. & James, W. P. T. in Brown Adipose Tissue (eds Trayhurn, P. & Nicholls, D. G.) 339–365 (Arnold, London, 1986).

    Google Scholar 

  22. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693– 702 (1991).

    Article  CAS  Google Scholar 

  23. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanatephenol-chloroform extraction. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  24. Derman, E. et al. Transcriptional control in the production of liver-specific mRNAs. Cell 23, 731–739 (1981).

    Article  CAS  Google Scholar 

  25. Feinberg, A. P. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analyt. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  26. Zeviani, M. et al. Sequence of cDNAs encoding subunit Vb of human and bovine cytochrome c oxidase. Gene 65, 1–11 (1988).

    Article  CAS  Google Scholar 

  27. Bernlohr, D. A., Angus, C. W., Lane, M. D., Bolanowski, M. A. & Kelly, T. J. J. Expression of specific mRNAs during adipose differentiation: identification of an mRNA encoding a homologue of myelin P2 protein. Proc. Natl Acad. Sci. USA 81, 5468–5472 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Kozak, L. P. & Birkenmeier, E. H. Mouse sn-glycerol-3-phosphate dehydrogenase: molecular cloning and genetic mapping of a cDNA sequence. Proc. Natl Sci. USA 80, 3020–3024 (1983).

    Article  ADS  CAS  Google Scholar 

  29. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  30. Ma, S. W. & Foster, D. O. Starvation-induced changes in metabolic rate, blood flow, and regional energy expenditure in rats. Can. J. Physiol. Pharmacol. 64, 1252–1258 (1986).

    Article  CAS  Google Scholar 

  31. Thomas, S. A. & Palmiter, R. D. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline Nature 387, 94–97 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enerbäck, S., Jacobsson, A., Simpson, E. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997). https://doi.org/10.1038/387090a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387090a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing