Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle

Abstract

Mutation of RPE65 can cause severe blindness from birth or early childhood, and RPE65 protein is associated with retinal pigment epithelium (RPE) vitamin A metabolism. Here, we show that Rpe65-deficient mice exhibit changes in retinal physiology and biochemistry. Outer segment discs of rod photoreceptors in Rpe65–/– mice are disorganized compared with those of Rpe65+/+ and Rpe65+/– mice. Rod function, as measured by electroretinography, is abolished in Rpe65–/– mice, although cone function remains. Rpe65–/– mice lack rhodopsin, but not opsin apoprotein. Furthermore, all-trans-retinyl esters over-accumulate in the RPE of Rpe65–/– mice, whereas 11-cis-retinyl esters are absent. Disruption of the RPE-based metabolism of all-trans-retinyl esters to 11-cis-retinal thus appears to underlie the Rpe65-/- phenotype, although cone pigment regeneration may be dependent on a separate pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the Rpe65 locus.
Figure 2: Light micrographs of Rpe65+/+, Rpe65+/– and Rpe65–/– mice.
Figure 3: Electron microscopy of outer retina of Rpe65-deficient and normal mice.
Figure 4: Dark-adapted ERG responses in Rpe65-deficient mice.
Figure 5: Light-adapted ERG responses in Rpe65-deficient mouse.
Figure 6: Absence of holoprotein rhodopsin in Rpe65-deficient mouse retina.
Figure 7: Presence of apoprotein opsin in Rpe65-deficient mouse retina.
Figure 8: Retinyl esters accumulate in Rpe65-deficient mouse RPE.

Similar content being viewed by others

References

  1. Hamel, C.P. et al. A developmentally regulated microsomal protein specific for the pigment epithelium of vertebrate retina. J. Neurosci. Res. 34, 414–425 ( 1993).

    Article  CAS  Google Scholar 

  2. Wright, A.F. A searchlight through the fog. Nature Genet. 17, 132–134 (1997).

    Article  CAS  Google Scholar 

  3. Gu, S. et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nature Genet. 17, 194–197 (1997).

    Article  CAS  Google Scholar 

  4. Marlhens, F. et al. Mutations in RPE65 cause Leber's congenital amaurosis. Nature Genet. 17, 139– 141 (1997).

    Article  CAS  Google Scholar 

  5. Morimura, H. et al. Mutations in the RPE65 gene in patients with autosomal retinitis pigmentosa or Leber congenital amaurosis. Proc. Natl Acad. Sci. USA 95, 3088–3093 (1998).

    Article  CAS  Google Scholar 

  6. Hamel, C.P., Jenkins, N.A., Gilbert, D.J., Copeland, N.G. & Redmond, T.M. The gene for the retinal pigment epithelium-specific protein RPE65 is localized to human 1p31 and mouse 3. Genomics 20, 509–512 (1994).

    Article  CAS  Google Scholar 

  7. Nicoletti, A. et al. Molecular characterization of the gene encoding an abundant protein specific to the retinal pigment epithelium. Hum. Mol. Genet. 4, 641–649 ( 1995).

    Article  CAS  Google Scholar 

  8. Hamel, C.P. et al. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J. Biol. Chem. 268, 15751–15757 (1993).

    CAS  PubMed  Google Scholar 

  9. Båvik, C.-O., Lévy, F., Hellman, U., Wernstedt, C. & Eriksson, U. The retinal pigment epithelial membrane receptor for plasma retinol-binding protein. J. Biol. Chem. 268, 20540–20546 ( 1993).

    PubMed  Google Scholar 

  10. Simon, A., Hellman, U., Wernstedt, C. & Eriksson, U. The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain dehydrogenases J. Biol. Chem. 270, 1107–1112 ( 1995).

    Article  CAS  Google Scholar 

  11. Wald, G. Molecular basis of visual excitation. Science 162, 230–239 (1968).

    Article  CAS  Google Scholar 

  12. Saari, J.C. Retinoids in photosensitive systems. in The Retinoids: Biology, Chemistry and Medicine (eds Sporn, M.B., Roberts, A.B. & Goodman, D.S.) 351– 385 (Raven, New York, 1994).

    Google Scholar 

  13. Bernstein, P.S., Law, W.C. & Rando, R.R. Biochemical characterization of the retinoid isomerase system of the eye. J. Biol. Chem. 262, 16848 –16857 (1987).

    CAS  PubMed  Google Scholar 

  14. Winston, A. & Rando, R.R. Regulation of isomerohydrolase in the visual cycle. Biochemistry 37, 2044– 2050 (1998).

    Article  CAS  Google Scholar 

  15. Barry, R.J., Canada, F.J. & Rando, R.R. Solubilization and partial purification of retinyl ester synthetase and retinoid isomerase from bovine ocular pigment epithelium. J. Biol. Chem. 264, 9231– 9238 (1989).

    CAS  PubMed  Google Scholar 

  16. Peachey, N.S., Goto, Y., al-Ubaidi, M.R. & Naash, M.I. Properties of the mouse cone-mediated electroretinogram during light adaptation. Neurosci. Lett. 162, 9– 11 (1993).

    Article  CAS  Google Scholar 

  17. Carter-Dawson, L. et al. Rhodopsin, 11-cis Vitamin A, and interstitial retinol-binding protein (IRBP) during retinal development in normal and rd mutant mice. Dev. Biol. 116, 431– 438 (1986).

    Article  CAS  Google Scholar 

  18. Smeland, S. et al. Tissue distribution of the receptor for plasma retinol-binding protein. Biochem. J. 305, 419– 425 (1995).

    Article  CAS  Google Scholar 

  19. Heller, J. & Bok, D. A specific receptor for retinol-binding protein as detected by the binding of human and bovine retinol-binding protein to pigment epithelial cells. Am. J. Ophthalmol. 81, 93–97 (1976).

    Article  CAS  Google Scholar 

  20. Sundaram, M., Sivaprasadarao, A., DeSousa, M.M. & Findlay, J.B.C. The transfer of retinol from serum retinol-binding protein to cellular retinol-binding protein is mediated by a membrane receptor. J. Biol. Chem. 273, 3336–3342 (1998).

    Article  CAS  Google Scholar 

  21. Wiggert, B., Bergsma, D.R., Lewis, M., Abe, T. & Chader, G.J. Vitamin A receptors. II. Characteristics of retinol binding in chick retina and pigment epithelium. Biochim. Biophys. Acta 498, 366–374 ( 1977).

    Article  CAS  Google Scholar 

  22. Noy, N. & Blaner, W.S. Interactions of retinol with binding proteins: Studies with rat cellular retinol-binding protein and rat retinol-binding protein. Biochemistry 30, 6380– 6386 (1991).

    Article  CAS  Google Scholar 

  23. Robison, W.G. & Kuwabara, T. Vitamin A storage and peroxisomes in retinal pigment epithelium and liver. Invest. Ophthalmol. Vis. Sci. 16, 1110–1117 ( 1977).

    CAS  PubMed  Google Scholar 

  24. Young, R.W. & Bok, D. Autoradiographic studies on the metabolism of the retinal pigment epithelium. Invest. Ophthalmol. 9, 524–536 (1970).

    CAS  PubMed  Google Scholar 

  25. Travis, G. Insights from a lost visual pigment. Nature Genet. 15, 115–117 (1997).

    Article  CAS  Google Scholar 

  26. Lai, Y.L., Wiggert, B., Liu, Y.P. & Chader, G.J. Interphotoreceptor retinol-binding protein: possible transport vehicles between compartments of the retina. Nature 298, 848– 849 (1982).

    Article  CAS  Google Scholar 

  27. Palczewski, K. et al. Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. Biochemistry 33, 13741–13750 (1994).

    Article  CAS  Google Scholar 

  28. Saari, J.C. & Bredberg, D.L. Lecithin: retinol acyl transferase in retinal pigment epithelial microsomes. J. Biol. Chem. 264, 8636–8640 (1989).

    CAS  PubMed  Google Scholar 

  29. Saari, J.C., Bredberg, D.L. & Noy, N. Control of substrate flow at a branch in the visual cycle. Biochemistry 33, 3106– 3112 (1994).

    Article  CAS  Google Scholar 

  30. Maw, M.A. et al. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nature Genet. 17, 198–200 ( 1997).

    Article  CAS  Google Scholar 

  31. Bridges, C.D.B. Distribution of retinol isomerase in vertebrate eyes and its emergence during retinal development. Vision Res. 29, 1711 –1717 (1989).

    Article  CAS  Google Scholar 

  32. Humphries, M.M. et al. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nature Genet. 15, 216 –219 (1997).

    Article  CAS  Google Scholar 

  33. Liou, G.I. et al. Early onset photoreceptor abnormalities induced by targeted disruption of the interphotoreceptor retinoid-binding protein gene. J. Neurosci. 18, 4511–4520, (1998).

    Article  CAS  Google Scholar 

  34. Goldstein, E.B. Early receptor potential of the isolated frog (Rana pipiens) retina. Vision Res. 7, 837–845 (1967).

    Article  CAS  Google Scholar 

  35. Das, S.R., Bhardwaj, N., Kjeldbye, H. & Gouras, P. Muller cells of chicken retina synthesize 11-cis-retinol. Biochem. J. 285, 907–913 (1992).

    Article  CAS  Google Scholar 

  36. Jones, G.J., Crouch, R.K., Wiggert, B., Cornwall, M.C. & Chader, G.J. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc. Natl Acad. Sci. USA 86, 9606– 9610 (1989).

    Article  CAS  Google Scholar 

  37. Hood, D.C. & Hock, P.A. Recovery of cone receptor activity in the frog's isolated retina. Vision Res. 13, 1943–1951 (1973).

    Article  CAS  Google Scholar 

  38. Goldstein, E.B. & Wolf, B.M. Regeneration of the green-rod pigment in the isolated frog retina. Vision Res. 13, 527–534 ( 1973).

    Article  CAS  Google Scholar 

  39. Ma, J.-x, Xu, L., Lockman, D.K., Redmond, T.M. & Crouch, R.K. Cloning and localization of RPE65 mRNA in salamander cone photoreceptor cells. Biochim. Biophys. Acta (in press).

  40. Chen, J. et al. The human blue opsin promoter directs transgene expression in short-wave cones and bipolar cells in the mouse retina. Proc. Natl Acad. Sci. USA 91, 2611–2615 (1994).

    Article  CAS  Google Scholar 

  41. Curcio, C.A., Sloan, K.R. Jr, Packer, O., Hendrickson, A.E. & Kalina, R.E. Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236, 579–582 ( 1987).

    Article  CAS  Google Scholar 

  42. Bennett, J., Wilson, J., Sun, D., Forbes, B. & Maguire, A. Adenovirus vector-mediated in vivo gene transfer into adult murine retina. Invest. Ophthalmol. Vis. Sci. 35, 2535–2542 (1994).

    CAS  PubMed  Google Scholar 

  43. Sullivan, D.M., Chung, D.C., Anglade, E., Nussenblatt, R.M. & Csaky, K.G. Adenovirus-mediated gene transfer of ornithine aminotransferase in cultured human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 37, 766–774 ( 1996).

    CAS  PubMed  Google Scholar 

  44. Ali, R.R. et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum. Mol. Genet. 5, 591– 594, (1996).

    Article  CAS  Google Scholar 

  45. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 ( 1993).

    Article  CAS  Google Scholar 

  46. Kedzierski, W., Lloyd, M., Birch, D.G., Bok, D. & Travis, G.H. Generation and analysis of transgenic mice expressing P216L-substituted rds/peripherin in rod photoreceptors. Invest. Ophthalmol. Vis. Sci. 38, 498–509 (1997).

    CAS  PubMed  Google Scholar 

  47. Molday, R.S. & MacKenzie, D. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry 22, 653–660 (1983).

    Article  CAS  Google Scholar 

  48. Bridges, C.D.B. & Alvarez, R.A. Measurement of the vitamin A cycle. Methods Enzymol. 81, 463–485 (1982).

    Article  CAS  Google Scholar 

  49. Landers, G.M. & Olson, J.A. Rapid, simultaneous determination of isomers of retinal, retinal oxime and retinol by high-performance liquid chromatography. J. Chromatogr. 438, 383– 392 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support of M. Lloyd, M. Kvaas and A. Van Dyke. We wish to thank S. Gentleman and G. Nuckolls for critical reading of the manuscript and for valuable suggestions. This research was supported in part by NIH grants EY00331 (D.B.), EY00444 (D.B.), EY12231 (J.X.M.) and EY04939 (R.K.C.) and by the Foundation Fighting Blindness (UCLA and MUSC). D.B. is a Research to Prevent Blindness Senior Scientific Investigator and Dolly Green Professor of Ophthalmology at UCLA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Michael Redmond..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redmond., T., Yu, S., Lee, E. et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20, 344–351 (1998). https://doi.org/10.1038/3813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing