Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A structural basis of the interactions between leucine-rich repeats and protein ligands

Abstract

THE leucine-rich repeat is a recently characterized structural motif1 used in molecular recognition processes as diverse as signal transduction, cell adhesion, cell development, DNA repair and RNA processing2. We present here the crystal structure at 2.5 Å resolution of the complex between ribonuclease A and ribonculease inhibitor, a protein built entirely of leucine-rich repeats. The unusual non-globular structure of ribonuclease inhibitor, its solvent-exposed parallel β-sheet and the conformational flexibility of the structure are used in the interaction; they appear to be the principal reasons for the effectiveness of leucine-rich repeats as protein-binding motifs. The structure can serve as a model for the interactions of other proteins containing leucine-rich repeats with their ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Takahashi, N., Takahashi, Y. & Putnam, F. W. Proc. natn. Acad. Sci. U.S.A. 82, 1906–1910 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Kobe, B. & Deisenhofer, J. Trends biochem. Sci. 19, 415–421 (1994).

    Article  CAS  Google Scholar 

  3. Hofsteenge, J., Kieffer, B., Matthies, R., Hemmings, B. A. & Stone, S. R. Biochemistry 27, 8537–8544 (1988).

    Article  CAS  Google Scholar 

  4. Kobe, B. & Deisenhofer, J. Nature 366, 751–756 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Avey, H. P. et al. Nature 11, 557–562 (1967).

    Article  ADS  Google Scholar 

  6. Kartha, G., Bello, J. & Harker, D. Nature 213, 862–865 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Borkakokti, N. Eur. J. Biochem. 132, 89–94 (1983).

    Article  Google Scholar 

  8. Birdsall, D. L. & McPherson, A. J. biol. Chem. 267, 22230–22236 (1992).

    CAS  PubMed  Google Scholar 

  9. Nachman, J. et al. Biochemistry 29, 928–937 (1990).

    Article  CAS  Google Scholar 

  10. CCP4 Acta crystallogr. D50, 760–763 (1994).

  11. Janin, J. & Chothia, C. J. biol. Chem. 265, 16027–16030 (1990).

    CAS  Google Scholar 

  12. Vicentini, A. M. et al. Biochemistry 29, 8827–8834 (1990).

    Article  CAS  Google Scholar 

  13. Roth, J. S. Biochim. biophys. Acta 21, 34–43 (1956).

    Article  CAS  Google Scholar 

  14. Fominaya, J. M. & Hofsteenge, J. J. biol. Chem. 267, 24655–24660 (1992).

    CAS  Google Scholar 

  15. Wlodawer, A., Svensson, L. A., Sjolin, L. & Gilliland, G. L. Biochemistry 27, 2705–2717 (1988).

    Article  CAS  Google Scholar 

  16. Yoder, M. D., Keen, N. T. & Jurnak, F. Science 260, 1503–1507 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Baumann, U., Wu, S., Flaherty, K. M. & McKay, D. B. EMBO J. 12, 3357–3364 (1993).

    Article  CAS  Google Scholar 

  18. Steinbacher, S. et al. Science 265, 383–386 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Davies, D. R. & Padlan, E. A. Curr. Biol. 2, 254–256 (1992).

    Article  CAS  Google Scholar 

  20. Kobe, B & Deisenhofer, J. J. molec. Biol. 231, 137–140 (1993).

    Article  CAS  Google Scholar 

  21. Kobe, B., Ma, Z. & Diesenhofer, J. J. molec. Biol. 241, 288–291 (1994).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. Proc. CCP4 Study Weekend (eds Sawyer, L. et al.) 56–62 (SERC, Daresbury Laboratory, Daresbury, UK 1993).

    Google Scholar 

  23. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  24. Jones, T. A., Bergdoll, M. & Kjeldgaard, M. Crystallography and Modeling Methods in Molecular Design (eds Bugg, C. E. & Ealick, S. E.) 189–195 (Springer, New York, 1990).

    Book  Google Scholar 

  25. Brünger, A. T. Nature 355, 472–475 (1992).

    Article  ADS  Google Scholar 

  26. Luzzati, P. V. Acta crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  27. Read, R. J. Acta crystallogr. A42, 140–149 (1986).

    Article  Google Scholar 

  28. Carson, M. J. molec. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  29. Nicholls, A. & Honig, B. J. comp. Chem. 12, 435–445 (1991).

    Article  CAS  Google Scholar 

  30. Kraulis, P. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobe, B., Deisenhofer, J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183–186 (1995). https://doi.org/10.1038/374183a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374183a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing