Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hypervariable C-termmal domain of rab proteins acts as a targeting signal

Abstract

MAMMALIAN cells express many ras-like low molecular mass GTP-binding proteins (rab proteins)1–6 that are highly homologous to the Yptl and Sec4 proteins involved in controlling secretion in yeast7-9. Owing to their structural similarity and to their variety, rab proteins have been postulated to act as specific regulators of membrance traffic in exocytosis and endocytosis10, and rab5 has been shown to be involved in early endosome fusion in vitro11. In agreement with their postulated functions, all rab proteins studied so far have been found in distinct subcompartments along the exocytic or endocytic pathways5,11–13. To define the region mediating their specific localization, we transiently expressed rab2, rab5 and rab7 hybrid proteins in BHK cells, and determined their intracellular localization by immunofluorescence confocal microscopy and subcellular fractionation. Here we present evidence that the highly variable C-terminal domain contains structural elements necessary for the association of rab proteins with their specific target membranes in the endocytic pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Touchot, N., Chardin, P. & Tavitian, A. Proc. natn. Acad. Sci. U.S.A. 84, 8210–8214 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Bucci, C. et al. Nucleic Acids Res. 16, 9979–9993 (1988).

    Article  CAS  Google Scholar 

  3. Matsui, Y. et al. J. biol. Chem. 263, 11071–11074 (1988).

    CAS  PubMed  Google Scholar 

  4. Zahraoui, A., Touchot, N., Chardin, P. & Tavitian, A. J. biol. Chem. 264, 12394–12401 (1989).

    CAS  Google Scholar 

  5. Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K. & Zerial, M. Cell 62, 317–329 (1990).

    Article  CAS  Google Scholar 

  6. Chavrier, P., Vingron, M., Sander, C., Simons, K. & Zerial, M. Molec. cell. Biol. 10, 6578–6585 (1990).

    Article  CAS  Google Scholar 

  7. Gallwitz, D., Donath, C. & Sander, C. Nature 306, 704–707 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Salminen, A. & Novick, P. J. Cell 49, 527–538 (1987).

    Article  CAS  Google Scholar 

  9. Segev, N., Mulholland, J. & Botstein, D. Cell 52, 915–924 (1988).

    Article  CAS  Google Scholar 

  10. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Gorvel, J. P., Chavrier, P., Zerial, M. & Gruenberg, J. Cell 64, 915–925 (1991).

    Article  CAS  Google Scholar 

  12. Goud, B., Zahraoui, A., Tavitian, A. & Saraste, J. Nature 345, 553–556 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Fischer von Mollard, G. et al. Proc. natn. Acad. Sci. U.S.A. 87, 1988–1992 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L. & Lowy, D. R. EMBO J. 3, 2581–2585 (1984).

    Article  CAS  Google Scholar 

  15. Deschenes, R. J. & Broach, J. R. Molec. cell. Biol. 7, 2344–2351 (1987).

    Article  CAS  Google Scholar 

  16. Molenaar, C. M. T., Prange, R. & Gallwitz, D. EMBO J. 7, 971–976 (1988).

    Article  CAS  Google Scholar 

  17. Walworth, N. C., Goud, B., Kastan Kabcenell, A. & Novick, P. J. EMBO J. 8, 1685–1693 (1989).

    Article  CAS  Google Scholar 

  18. Gutierrez, L., Magee, A. I., Marshall, C. J. & Hancock, J. F. EMBO J. 8, 1093–1098 (1989).

    Article  CAS  Google Scholar 

  19. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. Cell 57, 1167–1177 (1989).

    Article  CAS  Google Scholar 

  20. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. Proc. natn. Acad. Sci. U.S.A. 83, 8122–8126 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Zerial, M., Melancon, P., Schneider, C. & Garoff, H. EMBO J. 5, 1543–1550 (1986).

    Article  CAS  Google Scholar 

  22. Hopkins, C. R. Cell 35, 321–330 (1983).

    Article  CAS  Google Scholar 

  23. Schmid, S. L., Fuchs, R., Male, P. & Mellman, I. Cell 52, 73–83 (1988).

    Article  CAS  Google Scholar 

  24. Hancock, J. F., Paterson, H. & Marshall, C. J. Cell 63, 133–139 (1989).

    Article  Google Scholar 

  25. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Gene 77, 61–68 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavrier, P., Gorvel, JP., Stelzer, E. et al. Hypervariable C-termmal domain of rab proteins acts as a targeting signal. Nature 353, 769–772 (1991). https://doi.org/10.1038/353769a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353769a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing