Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair

Abstract

The Ku heterodimer (Ku70 and Ku80 subunits) contributes to genomic integrity through its ability to bind DNA double-strand breaks and facilitate repair by the non-homologous end-joining pathway. The crystal structure of the human Ku heterodimer was determined both alone and bound to a 55-nucleotide DNA element at 2.7 and 2.5 Å resolution, respectively. Ku70 and Ku80 share a common topology and form a dyad-symmetrical molecule with a preformed ring that encircles duplex DNA. The binding site can cradle two full turns of DNA while encircling only the central 3–4 base pairs (bp). Ku makes no contacts with DNA bases and few with the sugar-phosphate backbone, but it fits sterically to major and minor groove contours so as to position the DNA helix in a defined path through the protein ring. These features seem well designed to structurally support broken DNA ends and to bring the DNA helix into phase across the junction during end processing and ligation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the crystal structure.
Figure 2: Structure of the Ku–DNA complex.
Figure 3: Relatedness of human Ku70 and Ku80.
Figure 4: Surface depictions of Ku.
Figure 5: DNA-binding groove.
Figure 6: C-terminal DNA-binding SAP domain of Ku70.

Similar content being viewed by others

References

  1. van Gent, D. C., Hoeijmakers, J. H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet. 2, 196–206 (2001).

    Article  CAS  Google Scholar 

  2. Lieber, M. R. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 4, 77–85 (1999).

    Article  CAS  Google Scholar 

  3. Critchlow, S. E. & Jackson, S. P. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998).

    Article  CAS  Google Scholar 

  4. Haber, J. E. Partners and pathways: repairing a double-strand break. Trends Genet. 16, 259–264 (2000).

    Article  CAS  Google Scholar 

  5. Gottlieb, T. M. & Jackson, S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).

    Article  CAS  Google Scholar 

  6. Smith, G. C. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916–934 (1999).

    Article  CAS  Google Scholar 

  7. Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).

    Article  CAS  Google Scholar 

  8. Liang, F. & Jasin, M. Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA. J. Biol. Chem. 271, 14405–14411 (1996).

    Article  CAS  Google Scholar 

  9. Feldmann, E., Schmiemann, V., Goedecke, W., Reichenberger, S. & Pfeiffer, P. DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res. 28, 2585–2596 (2000).

    Article  CAS  Google Scholar 

  10. Chen, S. et al. Accurate in vitro end-joining of a DNA double-strand break with partially cohesive 3′-overhangs and 3′-phosphoglycolate termini: effect of Ku on repair fidelity. J. Biol. Chem. 276, 24323–24330 (2001).

    Article  CAS  Google Scholar 

  11. Taccioli, G. E. et al. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265, 1442–1445 (1994).

    Article  CAS  Google Scholar 

  12. Zhu, C., Bogue, M. A., Lim, D. S., Hasty, P. & Roth, D. B. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86, 379–389 (1996).

    Article  CAS  Google Scholar 

  13. Nussenzweig, A., Sokol, K., Burgman, P., Li, L. & Li, G. C. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development. Proc. Natl Acad. Sci. USA 94, 13588–13593 (1997).

    Article  CAS  Google Scholar 

  14. Gu, Y., Jin, S., Gao, Y., Weaver, D. T. & Alt, F. W. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc. Natl Acad. Sci. USA 94, 8076–8081 (1997).

    Article  CAS  Google Scholar 

  15. Difilippantonio, M. J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000).

    Article  CAS  Google Scholar 

  16. Ferguson, D. O. et al. The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Natl Acad. Sci. USA 97, 6630–6633 (2000).

    Article  CAS  Google Scholar 

  17. Roth, D. B. & Wilson, J. H. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell. Biol. 6, 4295–4304 (1986).

    Article  CAS  Google Scholar 

  18. Thode, S., Schafer, A., Pfeiffer, P. & Vielmetter, W. A novel pathway of DNA end-to-end joining. Cell 60, 921–928 (1990).

    Article  CAS  Google Scholar 

  19. Cary, R. B. et al. DNA looping by Ku and the DNA-dependent protein kinase. Proc. Natl Acad. Sci. USA 94, 4267–4272 (1997).

    Article  CAS  Google Scholar 

  20. Ramsden, D. A. & Gellert, M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J. 17, 609–614 (1998).

    Article  CAS  Google Scholar 

  21. Nick McElhinny, S. A., Snowden, C. M., McCarville, J. & Ramsden, D. A. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol. 20, 2996–3003 (2000).

    Article  CAS  Google Scholar 

  22. Dynan, W. S. & Yoo, S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 26, 1551–1559 (1998).

    Article  CAS  Google Scholar 

  23. Baumann, P. & West, S. C. DNA end-joining catalyzed by human cell-free extracts. Proc. Natl Acad. Sci. USA 95, 14066–14070 (1998).

    Article  CAS  Google Scholar 

  24. Paillard, S. & Strauss, F. Site-specific proteolytic cleavage of Ku protein bound to DNA. Proteins 15, 330–337 (1993).

    Article  CAS  Google Scholar 

  25. Singleton, B. K., Torres-Arzayus, M. I., Rottinghaus, S. T., Taccioli, G. E. & Jeggo, P. A. The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol. Cell. Biol. 19, 3267–3277 (1999).

    Article  CAS  Google Scholar 

  26. Yoo, S., Kimzey, A. & Dynan, W. S. Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J. Biol. Chem. 274, 20034–20039 (1999).

    Article  CAS  Google Scholar 

  27. Kong, X.-P., Onrust, R., O'Donnell, M. & Kuriyan, J. Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425–437 (1992).

    Article  CAS  Google Scholar 

  28. Gell, D. & Jackson, S. P. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res. 27, 3494–4502 (1999).

    Article  CAS  Google Scholar 

  29. Aravind, L. & Koonin, E. V. SAP—a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci. 25, 112–114 (2000).

    Article  CAS  Google Scholar 

  30. Ghosh, G., van Duyne, G., Ghosh, S. & Sigler, P. B. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 373, 303–310 (1995).

    Article  CAS  Google Scholar 

  31. Muller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L. & Harrison, S. C. Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 373, 311–317 (1995).

    Article  CAS  Google Scholar 

  32. de Vries, E., van Driel, W., Bergsma, W. G., Arnberg, A. C. & van der Vliet, P. C. HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J. Mol. Biol. 208, 65–78 (1989).

    Article  CAS  Google Scholar 

  33. Zhao, J., Wang, J., Chen, D. J., Peterson, S. R. & Trewhella, J. The solution structure of the DNA double-stranded break repair protein Ku and its complex with DNA: a neutron contrast variation study. Biochemistry 38, 2152–2159 (1999).

    Article  CAS  Google Scholar 

  34. Giffin, W. et al. Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 380, 265–268 (1996).

    Article  CAS  Google Scholar 

  35. Htun, H. & Dahlberg, J. E. Topology and formation of triple-stranded H-DNA. Science 243, 1571–1576 (1989).

    Article  CAS  Google Scholar 

  36. Yoo, S. & Dynan, W. S. Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res. 27, 4679–4686 (1999).

    Article  CAS  Google Scholar 

  37. Calsou, P. et al. The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA. J. Biol. Chem. 274, 7848–7856 (1999).

    Article  CAS  Google Scholar 

  38. Stewart, J., Hingorani, M. M., Kelman, Z. & O'Donnell, M. Mechanism of β clamp opening by the δ subunit of E. coli DNA polymerase III holoenzyme. J. Biol. Chem. 276, 19182–19189 (2001).

    Article  CAS  Google Scholar 

  39. Chou, C. H., Wang, J., Knuth, M. W. & Reeves, W. H. Role of a major autoepitope in forming the DNA binding site of the p70 (Ku) antigen. J. Exp. Med. 175, 1677–1684 (1992).

    Article  CAS  Google Scholar 

  40. Otwinoski, W. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  Google Scholar 

  41. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta. Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  42. Brünger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  43. CCP4. The CCP4 suite: programs for X-ray crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  44. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Jasin and K. Marians for critical reading of the manuscript; J. Gulbis for assistance with baculovirus production; L. Berman and M. Becker for use of synchrotron facilities at NSLS and C. Heaton at CHESS; and P. Jeffrey for help with synchrotron data collection. This work was supported by grants to J.G. from the NIH, HHMI and Pew Scholars Program in the Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Goldberg.

Additional information

The atomic coordinates have been deposited in the Protein Data Bank under accession numbers 1JEQ and 1JEY.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, J., Corpina, R. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607–614 (2001). https://doi.org/10.1038/35088000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35088000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing