Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-κB

Abstract

TRAIL (tumour-necrosis factor-related apoptosis ligand or Apo2L) triggers apoptosis through engagement of the death receptors TRAIL-R1 (also known as DR4) and TRAIL-R2 (DR5). Here we show that the c-Rel subunit of the transcription factor NF-κB induces expression of TRAIL-R1 and TRAIL-R2; conversely, a transdominant mutant of the inhibitory protein IκBα or a transactivation-deficient mutant of c-Rel reduces expression of either death receptor. Whereas NF-κB promotes death receptor expression, cytokine-mediated activation of the RelA subunit of NF-κB also increases expression of the apoptosis inhibitor, Bcl-xL, and protects cells from TRAIL. Inhibition of NF-κB by blocking activation of the IκB kinase complex reduces Bcl-xL expression and sensitizes tumour cells to TRAIL-induced apoptosis. The ability to induce death receptors or Bcl-xL may explain the dual roles of NF-κB as a mediator or inhibitor of cell death during immune and stress responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subunit-specific effects of NF-κB on death receptor expression and sensitivity to TRAIL.
Figure 2: Effect of inducible expression of c-Rel, ΔRel or RelA on death receptor expression and sensitivity to TRAIL.
Figure 3: NF-κB-induced expression of TRAIL-R2 and TRAIL-mediated radiosensitization independent of p53.
Figure 4: The RelA subunit of NF-κB induces Bcl-xL and protects cells from TRAIL/death receptor-induced apoptosis.
Figure 5: Inhibition of NF-κB by blocking activation of the IKK complex sensitizes tumour cells to TRAIL.
Figure 6: Representation of the molecular determinants of the contrasting effects of NF-κB on cell survival.

Similar content being viewed by others

References

  1. Evan, G. & Littlewood, T. A matter of life and cell death . Science 281, 1317–1322 (1998).

    Article  CAS  Google Scholar 

  2. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 ( 1995).

    Article  CAS  Google Scholar 

  3. Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 ( 1993).

    Article  CAS  Google Scholar 

  4. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312– 1316 (1998).

    Article  CAS  Google Scholar 

  5. Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science 281, 1305– 1308 (1998).

    Article  CAS  Google Scholar 

  6. Pan, G. et al. The receptor for the cytotoxic ligand TRAIL. Science 276, 111–113 ( 1997).

    Article  CAS  Google Scholar 

  7. Pan, G. et al. An antagonist decoy receptor and a new death domain-containing receptor for TRAIL. Science 277, 815– 818 (1997).

    Article  CAS  Google Scholar 

  8. Sheridan, J. P. et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818– 821 (1997).

    Article  CAS  Google Scholar 

  9. Walczak, H. et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16, 5386–5397 ( 1997).

    Article  CAS  Google Scholar 

  10. Wu, G. S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet. 17, 141– 143 (1997).

    Article  CAS  Google Scholar 

  11. Schneider, P. et al. Characterization of two receptors for TRAIL. FEBS Lett. 416, 329–334 ( 1997).

    Article  CAS  Google Scholar 

  12. Chaudhary, P. M. et al. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-κB pathway. Immunity 7, 821–830 ( 1997).

    Article  CAS  Google Scholar 

  13. Screaton, G. R. et al. TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr. Biol. 7, 693–696 (1997).

    Article  CAS  Google Scholar 

  14. Pitti, R. M. et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumour necrosis receptor family. J. Biol. Chem. 271 , 12687–12690 (1996).

    Article  CAS  Google Scholar 

  15. Wiley, S. R. et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682 (1995).

    Article  CAS  Google Scholar 

  16. Golstein, P. Cell death: TRAIL and its receptors. Curr. Biol. 7, 750–753 (1997).

    Article  Google Scholar 

  17. Marsters, S. A., Pitti, R. A., Sheridan, J. P. & Ashkenazi, A. Control of apoptosis signaling by Apo2 ligand. Rec. Prog. Horm. Res. 54, 225–234 ( 1999).

    CAS  PubMed  Google Scholar 

  18. Ashkenazi, A. et al. Safety and antitumour activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155– 162 (1999).

    Article  CAS  Google Scholar 

  19. Walczak, H. et al. Tumoricidal activity of tumour necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med. 5, 157 –163 (1999).

    Article  CAS  Google Scholar 

  20. Kastan, M. On the TRAIL from p53 to apoptosis? Nature Genet. 17 , 130–131 (1997).

    Article  CAS  Google Scholar 

  21. Degli-Esposti, M. et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med. 186 , 1165–1170 (1997).

    Article  CAS  Google Scholar 

  22. Mongkolsapaya, J. et al. Lymphocyte inhibitor of TRAIL: a new receptor protecting lymphocytes from the death ligand TRAIL. J. Immunol. 160, 3–6 (1998).

    CAS  PubMed  Google Scholar 

  23. Degli-Esposti, M. A. et al. The novel receptor TRAIL-R4 induces NF-κB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7, 813–820 ( 1997).

    Article  CAS  Google Scholar 

  24. Pan, G., Ni, J., Yu, G., Wei, Y. F. & Dixit, V. M. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett. 424, 41–45 (1998).

    Article  CAS  Google Scholar 

  25. Baeuerle, P. A. & Baltimore, D. NF-κB: ten years after. Cell 87,13– 20 (1996).

    Article  Google Scholar 

  26. Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376,167–170 ( 1995).

    Article  CAS  Google Scholar 

  27. Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274, 782–784 (1996).

    Article  CAS  Google Scholar 

  28. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-α-induced apoptosis by NF-κB . Science 274, 787–789 (1996).

    Article  CAS  Google Scholar 

  29. Wang, C. Y., Mayo, M. W. & Baldwin, A. S. Jr TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    Article  CAS  Google Scholar 

  30. Liu, Z. G., Hsu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 7, 565–576 (1996).

    Article  Google Scholar 

  31. Attar, R. M., Macdonald-Bravo, H., Raventos-Suarez, C., Durham, S. K. & Bravo, R. Expression of constitutively active IκBβ in T cells of transgenic mice: persistent NF-κB activity is required for T-cell immune responses. Mol. Cell. Biol. 18, 477–487 ( 1998).

    Article  CAS  Google Scholar 

  32. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c- IAP2 to suppress caspase-8 activation. Science 281, 1680– 1683 (1998).

    Article  CAS  Google Scholar 

  33. Zong, W. X., Edelstein, L. C., Chen, C., Bash, J. & Gelinas, C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis. Genes Dev. 13, 382– 387 (1999).

    Article  CAS  Google Scholar 

  34. Wang, C. Y., Guttridge, D. C., Mayo, M. W. & Baldwin, A. S. Jr NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol. Cell. Biol. 19, 5923–5929 (1999).

    Article  CAS  Google Scholar 

  35. Chen, C., Edelstein, L. C. & Gelinas, C. The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bcl-xL . Mol. Cell. Biol. 20, 2687–2695 ( 2000).

    Article  Google Scholar 

  36. Beg, A. A., Sha, W. C., Bronson, R. T. & Baltimore, D. Constitutive NF-κB activation, enhanced granulopoiesis, and neonatal lethality in IκBα-deficient mice. Genes Dev. 9, 2736–2746 (1995).

    Article  CAS  Google Scholar 

  37. Abbadie, C. et al. High levels of c-rel expression are associated with programmed cell death in the developing avian embryo and in bone marrow cells in vitro . Cell 75, 899–912 (1993).

    Article  CAS  Google Scholar 

  38. Ryan, K. M., Ernst, M. K., Rice, N. R. & Vousden, K. H. Role of NF-κB in p53-mediated programmed cell death. Nature 404, 892–897 ( 2000).

    Article  CAS  Google Scholar 

  39. Lipton, S. A. Janus faces of NF-κB: neurodestruction versus neuroprotection. Nature Med. 3, 20–22 ( 1997).

    Article  CAS  Google Scholar 

  40. Kontgen, F. et al. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 9, 1965–1977 (1995).

    Article  CAS  Google Scholar 

  41. Bash, J., Zong, W. X. & Gelinas, C. c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol. Cell. Biol. 17, 6526–6536 ( 1997).

    Article  CAS  Google Scholar 

  42. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage . Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  43. Strasser, A., Harris, A. W., Jacks, T. & Cory, S. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79, 329– 339 (1994).

    Article  CAS  Google Scholar 

  44. Cheng, E. H.-Y. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases . Science 278, 1966–1968 (1997).

    Article  CAS  Google Scholar 

  45. Zhou, B. P. et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-κB pathway. J. Biol. Chem. 275, 8027–8031 (2000).

    Article  CAS  Google Scholar 

  46. May, M. J. et al. Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 289, 1550–1554 ( 2000).

    Article  CAS  Google Scholar 

  47. Yin, M.-J., Yamamoto, T. & Gaynor, R. B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature 396, 77–80 (1998).

    Article  CAS  Google Scholar 

  48. Ouaaz, F., Li, M. & Beg, A. A. A critical role for the RelA subunit of NF-κB in regulation of multiple immune-response genes and in Fas-induced cell death. J. Exp. Med. 189, 999–1004 ( 1999).

    Article  CAS  Google Scholar 

  49. Ibrado, A. M., Liu, L. & Bhalla, K. Bcl-xL overexpression inhibits progression of molecular events leading to paclitaxel-induced apoptosis of human acute myeloid leukemia HL-60 cells. Cancer Res. 57, 1109– 1115 (1997).

    CAS  PubMed  Google Scholar 

  50. Ravi, R. et al. p53-mediated repression of NF-κB RelA via the transcriptional integrator p300. Cancer Res. 58, 4531– 4536 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Vogelstein for the p53+/+ and p53−/− HCT116 cells; T. Jacks for the p53−/− MEFs; W. El-Deiry for the vector encoding KILLER/DR5; A. A. Beg for providing RelA−/− mouse fibroblasts; S. Gerondakis and C. Snapper for providing c-Rel−/− fibroblasts and c-Rel−/− mice; and K. Bhalla for the HL-60-Neo and HL-60-Bcl-xL cells. This work was funded in part by grants from the NIH (National Cancer Institute), the US Army Medical Research and Materiel Command, Department of Defense Breast Cancer Research Program, and the American Cancer Society (to A.B.). A.B. is a recipient of Physician Scientist award from the Passano Foundation and a Scholar award from the Valvano Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Bedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, R., Bedi, G., Engstrom, L. et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-κB. Nat Cell Biol 3, 409–416 (2001). https://doi.org/10.1038/35070096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing