Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress

Abstract

Under conditions of endoplasmic reticulum (ER) stress, mammalian cells induce both translational repression and the unfolded protein response that transcriptionally activates genes encoding ER-resident molecular chaperones. To date, the only known pathway for translational repression in response to ER stress has been the phosphorylation of eIF-2α by the double-stranded RNA-activated protein kinase (PKR) or the transmembrane PKR-like ER kinase (PERK). Here we report another pathway in which the ER transmembrane kinase/ribonuclease IRE1β induces translational repression through 28S ribosomal RNA cleavage in response to ER stress. The evidence suggests that both pathways are important for efficient translational repression during the ER stress response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cloning of human IRE1β.
Figure 2: Northern blot analysis of BiP/GRP78 in non-transfectants and hIRE1 stable transfectants.
Figure 3: Induction of apoptosis by overexpression of hIRE1β.
Figure 4: Cleavage of 28S rRNA in cells overexpressing hIRE1β.
Figure 5: Repression of protein synthesis in cells overexpressing hIRE1β.
Figure 6: Attenuation of ER-stress-dependent 28S rRNA cleavage and translational repression by hIRE1β K547A overexpression.

Similar content being viewed by others

References

  1. Gething, M.-J. & Sambrook, J. Protein folding in the cell. Nature 355, 33–45 (1992).

    Article  CAS  Google Scholar 

  2. Kaufman, R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233 (1999).

    Article  CAS  Google Scholar 

  3. Kozutsumi, Y., Segal, M., Normington, K., Gething, M.-J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

    Article  CAS  Google Scholar 

  4. Brostrom, C. O. & Brostrom, M. A. Calcium-dependent regulation of protein synthesis in intact mammalian cells. Annu. Rev. Physiol. 52, 577–590 (1990).

    Article  CAS  Google Scholar 

  5. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell. 73, 1197–1206 (1993).

    Article  CAS  Google Scholar 

  6. Mori, K., Ma, W., Gething, M.-J. & Sambrook, J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 74, 743–756 (1993).

    Article  CAS  Google Scholar 

  7. Bork, P. & Sander, C. A hybrid protein kinase-RNase in an interferon-induced pathway? FEBS Lett. 334, 149–152 (1993).

    Article  CAS  Google Scholar 

  8. Chapman, R., Sidrauski, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell Dev. Biol. 14, 459–485 (1998).

    Article  CAS  Google Scholar 

  9. Mori, K., Kawahara, T., Yoshida, H., Yanagi, H. & Yura, T. Signaling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1, 803–817 (1996).

    Article  CAS  Google Scholar 

  10. Kohno, K., Normington, K., Sambrook, J., Gething, M.-J. & Mori, K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell. Biol. 13, 877–890 (1993).

    Article  CAS  Google Scholar 

  11. Mori, K. et al. A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J. 11, 2583–2593 (1992).

    Article  CAS  Google Scholar 

  12. Tirasophon, W., Welihinda, A. A. & Kaufman, R. J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase / endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998).

    Article  CAS  Google Scholar 

  13. Wang, X.-Z. et al. Cloning of mammalian Ire1 reveals diversity in the ER stress response. EMBO J. 17, 5708–5717 (1998).

    Article  CAS  Google Scholar 

  14. Prostko, C. R., Brostrom, M. A., Malara, E. M. & Brostrom, C. O. Phosphorylation of eukaryotic initiation factor (eIF) 2α and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78. J. Biol. Chem. 267, 16751–16754 (1992).

    CAS  PubMed  Google Scholar 

  15. Clemens, M. J. Regulation of eukaryotic protein synthesis by protein kinases that phosphorylate initiation factor eIF-2. Mol. Biol. Rep. 19, 201–210 (1994).

    Article  CAS  Google Scholar 

  16. Chen, J. J. & London, I. M. Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem. Sci. 20, 105–108 (1995).

    Article  CAS  Google Scholar 

  17. Grosfeld, H. & Ochoa, S. Purification and properties of the double-stranded RNA-activated eukaryotic initiation factor 2 kinase from rabbit reticulocytes. Proc. Natl Acad. Sci. USA. 77, 6526–6530 (1980).

    Article  CAS  Google Scholar 

  18. Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha subunit kinase, PEK, involved in translational control. Mol. Cel. Biol. 18, 7499–7509 (1998).

    Article  CAS  Google Scholar 

  19. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 397, 271–274 (1999).

    Article  CAS  Google Scholar 

  20. Berlanga, J. J., Santoyo, J. & De Haro, C. Charaterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2α kinase. Eur. J. Biochem. 265, 754–762 (1999).

    Article  CAS  Google Scholar 

  21. Sood, R., Porter, A. C., Olsen, D., Cavener, D. R. & Wek, R. C. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2α. Genetics 154, 787–801 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Prostko, C. R., Dholakia, J. N., Brostrom, M. A. & Brostrom, C. O. Activation of the double-stranded RNA-regulated protein kinase by depletion of endoplasmic reticular calcium stores. J. Biol. Chem. 270, 6211–6215 (1995).

    Article  CAS  Google Scholar 

  23. Srivastava, S. P., Davies, M. V. & Kaufman, R. J. Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J. Biol. Chem. 270, 16619–16624 (1995).

    Article  CAS  Google Scholar 

  24. Takatsuki, A., Kohno, K. & Tamura, G. Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agric. Biol. Chem. 39, 2089–2091 (1975).

    CAS  Google Scholar 

  25. Shamu, C. E. & Walter, P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 15, 3028–3039 (1996).

    Article  CAS  Google Scholar 

  26. Welihinda, A. A. & Kaufman, R. J. The unfolded protein response pathway in Saccharomyces cerevisiae. J. Biol. Chem. 271, 18181–18187 (1996).

    Article  CAS  Google Scholar 

  27. Brimacombe, R. The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur. J. Biochem. 230, 365–383 (1995).

    Article  CAS  Google Scholar 

  28. Dube, P et al. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80S ribosome. J. Mol. Biol. 279, 403–421 (1998).

    Article  CAS  Google Scholar 

  29. Iordanov, M. S. et al. Activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase by double-stranded RNA and encephalomyocarditis virus: involvement of RNase L, protein kinase R, and alternative pathways. Mol. Cell. Biol. 20, 617–627 (2000).

    Article  CAS  Google Scholar 

  30. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell. 5, 897–904 (2000).

    Article  CAS  Google Scholar 

  31. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol. 2, 326–332 (2000).

    Article  CAS  Google Scholar 

  32. Korth, M. J. & Katze, M. G. Evading the interferon response: hepatitis C virus and the interferon-induced protein kinase, PKR. Curr. Top. Microbiol. Immunol. 242, 197–224 (2000).

    CAS  PubMed  Google Scholar 

  33. Wreschner, D. H., James, T. C., Silverman, R. H. & Kerr, I. M. Ribosomal RNA cleavage, nuclease activation and 2-5A (ppp(A2′p)nA) in interferon-treated cells. Nucleic Acids Res. 9, 1571–1581 (1981).

    Article  CAS  Google Scholar 

  34. Silverman, R. H., Cayley, P. J., Knight, M., Gilbert, C. S. & Kerr, I. M. Control of the ppp(A2′p)nA system in HeLa cells. Eur. J. Biochem. 124, 131–138 (1982).

    Article  CAS  Google Scholar 

  35. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  Google Scholar 

  36. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kaufman for the hIRE1α and hIRE1α K599A cDNAs; C. Yamamoto for constructing the His-tagged hIRE1β; L. Hendershot and members of the Kohno laboratory for discussion; K. Maekawa, M. Yamao and E. Muro for technical assistance; and I. Farcasanu for critically reading this manuscript. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (to K.K.) from the Ministry of Education, Science, Sports and Culture of Japan, and supported in part by the Sapporo Bioscience Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kohno.

Supplementary information

Table 1 Percent of cells entering the cell cycle

Table 2 Discontinuously treating cells with growth factors drives several different cell types into S phase (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwawaki, T., Hosoda, A., Okuda, T. et al. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 3, 158–164 (2001). https://doi.org/10.1038/35055065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing