Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurotrophins as synaptic modulators

Key Points

  • Neurotrophins (NTs) are regulatory factors that mediate the differentiation and survival of neurons. Recent evidence indicates that NTs may also act as synaptic modulators.

  • Binding of an NT to a high-affinity tyrosine receptor kinase (Trk) initiates a signal-transduction cascade that can modify gene expression. Each Trk is preferentially activated by one or more NTs. A low-affinity pan-neurotrophin receptor (p75) forms a complex with the Trk receptor and modulates its activity.

  • After their synthesis in the cell body, NTs and Trks are transported in secretory granules and post-Golgi vesicles to the postsynaptic dendrites or presynaptic nerve terminals.

  • Synaptic activity may regulate the synthesis, packaging and transport of NTs and Trk receptors.

  • NT secretion also seems to be regulated by synaptic activity. NTs bind tightly to the cell surface or extracellular matrix after secretion and so are likely to act as highly localized synaptic modulators.

  • Here, a model for the synaptic actions of NTs is described:

  • Constitutive secretion of low levels of NTs from postsynaptic dendrites provides trophic regulation of synaptic functions, including the ability to generate long-term potentiation.

  • Transient high levels of postsynaptic calcium due to synaptic activity increase NT secretion, raising local levels of NTs. This may be supplemented by activity-dependent synthesis and transport of NTs.

  • Correlated synaptic activity can act cooperatively to raise the postsynaptic calcium concentration to a level sufficient to trigger high-level NT secretion.

  • High local NT levels then induce the modification of synaptic functions and the formation of new synaptic contacts.

  • Inputs with uncorrelated activity fail to raise the postsynaptic calcium concentration sufficiently and so may be deprived of NTs as a result of directed transport of NTs to adjacent synapses with correlated activity. This results in activity-dependent refinement of synaptic contacts.

Abstract

The role of neurotrophins as regulatory factors that mediate the differentiation and survival of neurons has been well described. More recent evidence indicates that neurotrophins may also act as synaptic modulators. Here, I review the evidence that synaptic activity regulates the synthesis, secretion and action of neurotrophins, which can in turn induce immediate changes in synaptic efficacy and morphology. By this account, neurotrophins may participate in activity-dependent synaptic plasticity, linking synaptic activity with long-term functional and structural modification of synaptic connections.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transport and secretion of neurotrophins.
Figure 2: Neurotrophins as synaptic morphogens.

References

  1. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 235 , 1154–1162 (1987).

    Google Scholar 

  2. Korsching, S. & Thoenen, H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: Correlation with density of sympathetic innervation. Proc. Natl Acad. Sci. USA 80, 3513–3516 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hendry, I. A., Stockel, K., Thoenen, H. & Iversen, L. L. The retrograde axonal transport of nerve growth factor. Brain Res. 68, 103–121 (1974).

    CAS  PubMed  Google Scholar 

  4. Distefano, P. S. et al. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8, 983–993 ( 1992)

    CAS  PubMed  Google Scholar 

  5. Lewin, G. R. & Barde, Y.-A. Physiology of the neurotrophins . Annu. Rev. Neurosci. 19, 289– 317 (1996).

    CAS  PubMed  Google Scholar 

  6. Reichardt, L. & Farinas, I. in Molecular and Cellular Approaches to Neural Development (eds Cowan, W. M., Jessell, T. M. & Zipursky, L.) 220–263 (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  7. Greene, L. A. & Kaplan, D. R. Early events in neurotrophin signaling via Trk and p75 receptors. Curr. Opin. Neurobiol. 5 , 579–587 (1995).

    CAS  PubMed  Google Scholar 

  8. Barker, P. A. & Shooter, E. M. Disruption of NGF binding to the low affinity neurotrophin receptor p75LNTR reduces NGF binding to TrkA on PC12 cells. Neuron 13, 203– 215 (1994).

    CAS  PubMed  Google Scholar 

  9. Phelan, K. A., Sherr E. H., Aletta, J. M. & Greene, L. A. in The Nerve Growth Cone (eds Letourneau, P. C., Kater, S. B. & Macagno, E. R.) 151–166 (New York, Raven Press, 1991).

    Google Scholar 

  10. Gallo, G. & Letourneau, P. C. Localized sources of neurotrophins initiate axon collateral sprouting. J. Neurosci. 18 , 5403–5414 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McAllister, A. K., Lo, D. C. & Katz, L. C. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15, 791– 803 (1995).First evidence that the pattern of dendritic growth in the cortex can be regulated by various neurotrophins in a layer-specific manner.

    CAS  PubMed  Google Scholar 

  12. Cohen-Cory, S. & Fraser, S. E. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 378, 192–196 ( 1995).A clear demonstration that a neurotrophin can induce rapid morphological changes of developing axons in the living Xenopus brain.

    CAS  PubMed  Google Scholar 

  13. Gundersen, R. W. & Barrett, J. N. Characterization of the turning response of dorsal root neurites toward nerve growth factor . J. Cell Biol. 87, 546– 554 (1980).

    CAS  PubMed  Google Scholar 

  14. Song, H.-J., Ming, G-L. & Poo, M.-M. A cAMP-induced switching of turning direction of nerve growth cones. Nature 388, 275– 279 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Rudy, B., Kirschenbaum, B., Rukenstein, A. & Greene, L. A. Nerve growth factor increases the number of functional Na channels and induces TTX-resistant Na channels in PC12 pheochromocytoma cells. J. Neurosci. 7, 1613–1625 ( 1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lesser, S. S., Sherwood, N. T. & Lo, D. C. Neurotrophins differentially regulate voltage-gated ion channels. Mol. Cell. Neurosci. 10, 173 –183 (1997).

    CAS  PubMed  Google Scholar 

  17. Lohof, A. M., Ip, N. Y. & Poo, M.-M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353 (1993).The first demonstration that neurotrophins can potentiate synaptic transmission by enhancing spontaneous and evoked transmitter release.

    CAS  PubMed  Google Scholar 

  18. Lessmann, V., Gottmann, K. & Heumann, R. BDNF and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurons. Neuroreport 6, 21–25 (1994).

    CAS  PubMed  Google Scholar 

  19. Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662 ( 1995).

    CAS  PubMed  Google Scholar 

  20. McAllister, A. K., Katz, L. C. & Lo, L. C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    CAS  PubMed  Google Scholar 

  21. Schuman, E. M. Neurotrophin regulation of synaptic transmission. Curr. Opin. Neurobiol. 9, 105–109 ( 1999).

    CAS  PubMed  Google Scholar 

  22. Schinder, A. F. & Poo, M.-M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. (in the press).

  23. Gall, C. M. & Isackson, P. J. Limbic seizures increase neuronal production of messenger RNA for nerve growth factor. Science 245, 758–761(1989).

    CAS  PubMed  Google Scholar 

  24. Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H. & Lindholm, D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9, 3545– 3550 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ernfors, P., Bengzon, J., Kokaia, Z., Persson, H. & Lindvall, O. Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7, 165–176 (1991).

    CAS  PubMed  Google Scholar 

  26. Patterson, S. L., Grover, L. M., Schwartzkroin, P. A. & Bothwell, M. Neurotrophin expression in rat hippocampal slices; a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9, 1081–1088 (1992).

    CAS  PubMed  Google Scholar 

  27. Castraen, E. et al. The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. Neuroreport 4, 895–898 (1993).

    Google Scholar 

  28. Castraen, E., Zafra, F., Thoenen, H. & Lindholm, D. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex . Proc. Natl Acad. Sci. USA 89, 9444– 9448 (1992).

    Google Scholar 

  29. Zafra, F., Castren, E., Thoenen, H. & Lindholm, D. Interplay between glutamate and γ-aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proc. Natl Acad. Sci. USA 88 , 10037–10041(1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu, B., Yokoyama, M., Dreyfus, C. F. & Black, I. B. Depolarizing stimuli regulate nerve growth factor gene expression in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 88, 6289–6292 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lindholm, D., Castren, E., Berzaghi, M., Blochl, A. & Thoenen, H. Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain -- implications for neuronal plasticity. J. Neurobiol. 25, 1362– 1372 (1994).

    CAS  PubMed  Google Scholar 

  32. Berninger, B., Marty, S., Zafra, F., Berzaghi, M. P. & Thoenen, H. GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development 121, 2327–2235 (1995).

    CAS  PubMed  Google Scholar 

  33. Funakoshi, H. et al. Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 268, 1495–1499 (1995).

    CAS  PubMed  Google Scholar 

  34. Steward, O. & Levy, W. B. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284–291 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tiedge, H. & Brosius, J. Translational machinery in dendrites of hippocampal neurons in culture. J. Neurosci. 16, 7171–7181 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tongiorgi, E., Righi, M & Cattaneo, A. Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J. Neurosci. 17, 9492–9505 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang, H., & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 ( 1996).Indirect evidence that strongly argues for a role for neurotrophin-induced local protein synthesis in the dendrites of CA1 pyramidal neurons of the hippocampus.

    CAS  PubMed  Google Scholar 

  38. Casadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237 ( 1999).

    CAS  PubMed  Google Scholar 

  39. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257 (2000).

    CAS  PubMed  Google Scholar 

  40. Steward, O. mRNA localization in neurons: a multipurpose mechanism. Neuron 18, 9–12 (1997 ).

    CAS  PubMed  Google Scholar 

  41. Moller, J. C., Kruttgen, A., Heymach, J. V., Ghori, N. & Shooter, E. M. Subcellular localization of epitope-tagged neurotrophins in neuroendocrine cells. J. Neurosci. Res. 51, 41–48 (1998).

    Google Scholar 

  42. Fawcett, J. P. et al. Detection of brain-derived neurotrophic factor in a vesicular fraction of brain synaptosomes. J. Biol. Chem. 272, 8837–8840 (1997).

    CAS  PubMed  Google Scholar 

  43. Conner, J. M., Lauterborn, J. C., Yan, Q., Gall, C. M. & Varon, S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295– 2313 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Altar, C. A. et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature. 389, 856–860 (1997).

    CAS  PubMed  Google Scholar 

  45. von Bartheld, C. S., Byers, M. R., Williams, R. & Bothwell, M. Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system. Nature 379, 830– 833 (1996).A direct demonstration of the existence of both anterograde and retrograde transport, as well as interneuronal transfer of neurotrophins in the nervous system.

    CAS  PubMed  Google Scholar 

  46. Heumann, R., Schwab, M. & Thoenen, H. A second messenger required for nerve growth factor biological activity? Nature 292, 838– 840 (1981).

    CAS  PubMed  Google Scholar 

  47. Riccio, A. Pierchala, B. A., Ciarallo, C. L. & Ginty, D. O. An NGF–TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097 –1100 (1997).

    CAS  PubMed  Google Scholar 

  48. Tsui-Pierchala, B. A. & Ginty, D. D. Characterization of an NGF-P-TrkA retrograde-signaling complex and age-dependent regulation of TrkA phosphorylation in sympathetic neurons. J. Neurosci. 19, 8207–8218 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. von Bartheld, C. S. et al. Retrograde transport of neurotrophins from the eye to the brain in chick embryos: roles of the p75NTR and trkB receptors. J. Neurosci. 16, 2995–3008 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dan, Y., Song, H.-J. & Poo, M.-M. Evoked neuronal secretion of false transmitters. Neuron 13, 909–917 ( 1994).

    CAS  PubMed  Google Scholar 

  51. Poo, M.-M., Dan, Y., Song, H.-J., Morimoto, T. & Popov, S. Calcium-dependent vesicular exocytosis: from constitutive to regulated secretion. Cold Spring Harb. Symp. Quant. Biol. 60, 349–359 (1996).

    Google Scholar 

  52. Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron. 21, 681–693 (1998).Evidence indicating that electrical activity and cyclic AMP may regulate the exocytotic fusion of post-Golgi membrane precursor vesicles, a pathway conventionally considered to be 'constitutive'.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Du, J., Feng, L., Yang, F. & Lu, B. Activity- and Ca2+-dependent modulation of surface expression of brain-derived neurotrophic factor receptors in hippocampal neurons. J. Cell Biol. 150, 1423–1434 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, X.-H. & Poo, M.-M. Potentiation of developing synapses by postsynaptic secretion of NT-4. Neuron 19, 825–835 (1997).

    CAS  PubMed  Google Scholar 

  55. Blöchl, A. & Thoenen, H. Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur. J. Neurosci. 7, 1220–1228 (1995).The first evidence that neurotrophin secretion from neurons can be triggered by membrane depolarization.

    PubMed  Google Scholar 

  56. Goodman, L. J. et al. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol. Cell. Neurosci. 7, 222–238 ( 1996).

    CAS  PubMed  Google Scholar 

  57. Balkowiec, A. & Katz, D. M. Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J. Neurosci. 20, 7417 –7423 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Heymach, J. V., Kruttgen, A., Suter, U. & Shooter, E. M. The regulated secretion and vectorial targeting of neurotrophins in neuroendocrine and epithelial cells. J. Biol. Chem. 271, 25430– 25437 (1996).

    CAS  PubMed  Google Scholar 

  59. Peng, Y. & Zucker, R. S. Release of LHRH is linearly related to the time integral of presynaptic Ca2+ elevation above a threshold level in bullfrog sympathetic ganglia. Neuron 10, 465–473 (1993).

    CAS  PubMed  Google Scholar 

  60. Canossa, M. et al. Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity. Proc. Natl Acad. Sci. USA 94, 13279–13286 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kruttgen, A., Moller, J. C., Heymach J. V. & Shooter, E. M. Neurotrophins induce release of neurotrophins by the regulated secretory pathway . Proc. Natl Acad. Sci. USA 95, 9614– 9619 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Berninger, B., García, D. E., Inagaki, N., Hahnel, C. & Lindholm, D. BDNF and NT-3 induce intracellular Ca2+ elevation in hippocampal neurons. Neuroreport 4, 1303–1306 ( 1993).

    CAS  PubMed  Google Scholar 

  63. Stoop, R. & Poo, M.-M. Synaptic potentiation by neurotrophic factors: differential and synergistic actions of BDNF and CNTF. J. Neurosci. 16, 3256–3264 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kafitz, K. W., Rose, C. R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401 , 918–921 (1999).

    CAS  PubMed  Google Scholar 

  65. Purves, D. & Nja, A. in Neuronal Plasticity. (ed. Cotman, C. W.) 27–47 (Raven, New York, 1978).

    Google Scholar 

  66. Fitzsimonds, R., Song, H.-J. & Poo, M.-M. Propagation of activity-dependent synaptic depression in small neural networks. Nature 388, 439 –448 (1997).

    CAS  PubMed  Google Scholar 

  67. Tao, H., Zhang, L., Bi, G. & Poo, M.-M. Selective presynaptic propagation of long-term potentiation in defined neural networks. J. Neurosci. 20, 3233–3243 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fischbach, G. D. & Rosen, K. M. ARIA: a neuromuscular junction neuregulin. Ann. Rev. Neurosci. 20, 429–458 (1997).

    CAS  PubMed  Google Scholar 

  69. McMahan, U. J. The agrin hypothesis. Cold Spring Harb. Symp. Quant. Biol. 50, 407–418 (1990).

    Google Scholar 

  70. Loeb, J. A. & Fischbach, G. D. Neurotrophic factors increase neuregulin expression in embryonic ventral spinal cord neurons. J. Neurosci. 17, 1416–1424 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, T., Xie, K. & Lu, B. Neurotrophins promote maturation of developing neuromuscular synapses. J. Neurosci. 15, 4796–4805 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Liou, J. C. & Fu, W. M. Regulation of quantal secretion from developing motorneurons by postsynaptic activity-dependent release of NT-3 . J. Neurosci. 17, 2459– 2468 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gonzalez, M. et al. Disruption of TrkB-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 24, 567–583 ( 1999).

    CAS  PubMed  Google Scholar 

  74. Nawa, H., Pelleymounter, M. A. & Carnahan, J. Intraventricular administration of BDNF increases neuropeptide expression in newborn rat brain. J. Neurosci. 14, 3751–3765 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Narisawa-Saito M., Carnahan, J., Araki, K., Yamaguchi, T. & Nawa, H. Brain-derived neurotrophic factor regulates the expression of AMPA receptor proteins in neocortical neurons. Neuroscience 88, 1009–1014 ( 1999).

    CAS  PubMed  Google Scholar 

  76. Huang, Z. J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98 , 739–755 (1999).

    CAS  PubMed  Google Scholar 

  77. Streit, F. & Lux, H. D. Voltage dependent calcium currents in PC12 growth cones and cells during NGF-induced cell growth. Eur. J. Physiol. 408, 634–641 (1987).

    CAS  Google Scholar 

  78. Sherma, N., D'Arcangelo, G., Kleinlaus, A., Halegoua, S. & Trimmer, J. S. Nerve growth factor regulates the abundance and distribution of K channels in PC12 cells. J. Cell Biol. 123, 1835–1843 (1993).

    Google Scholar 

  79. Xie, Z.-P. & Poo, M.-M. Initial events in the formation of neuromuscular synapse: Rapid induction of acetylcholine release. Proc. Natl Acad. Sci. USA 83, 7069– 7073 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lockhart, S. T., Turrigiano, G. G. & Birren, S. J. Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J. Neurosci. 17, 9573–9582 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl Acad. Sci. USA 92, 8074– 8077 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Carmignoto, G., Pizzorusso, T., Tia, S. & Vicini, S. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex. J. Physiol. 498, 153–164 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Messaoudi, E., Baardsen, K., Srebro, B. & Bramham, C. R. Acute intrahippocampal infusion of BDNF induces lasting potentiation of synaptic transmission in the rat dentate gyrus. J. Neurophysiol. 79, 496–499 (1998).

    CAS  PubMed  Google Scholar 

  84. Li, Y. X. et al. Expression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 95, 10884–10889 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sherwood, N. T. & Lo, D. C. Long-term enhancement of central synaptic transmission by chronic brain-derived neurotrophic factor treatment. J. Neurosci. 19, 7025– 7036 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, H. G., Wang, T., Olafsson, P. & Lu, B. Neurotrophin 3 potentiates neuronal activity and inhibits γ-aminobutyratergic synaptic transmission in cortical neurons. Proc. Natl Acad. Sci. USA 91, 12341–12345 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanaka, T., Saito, H. & Matsuki, N. Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor BDNF in rat hippocampus. J. Neurosci. 17, 2959–2966 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Frerking, M., Malenka, R. C. & Nicoll, R. A. Brain-derived neurotrophic factor BDNF modulates inhibitory, but not excitatory, transmission in the CA1 region of the hippocampus . J. Neurophysiol. 80, 3383– 3386 (1998).

    CAS  PubMed  Google Scholar 

  89. Balkowiec, A., Kunze, D. L. & Katz, D. M. Brain-derived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory relay neurons. J. Neurosci. 20, 1904–1911 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lessmann, V. & Heumann, R. Modulation of unitary glutamatergic synapses by neurotrophin-4/5 of brain-derived neurotrophic factor in hippocampal microcultures: presynaptic enhancement depends on pre-established paired-pulse facilitation. Neuroscience 86, 399– 413 (1998).

    CAS  PubMed  Google Scholar 

  91. Berninger, B., Schinder, A. & Poo, M.-M. Synaptic reliability correlates with reduced susceptibility to synaptic potentiation by brain-derived neurotrophic factor. Learn. Mem. 6, 232–242 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schinder, A., Berninger, B. & Poo, M.-M. Target-cell specific potentiation of glutamatergic synapses by neurotrophins. Neuron 25, 151 –163 (2000).

    CAS  PubMed  Google Scholar 

  93. Pozzo-Miller, L. D. et al. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci. 19, 4972– 4983 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jovanovic, J. N., Czernik, A. J., Fienberg, A. A., Greengard, P. & Sihra, T. S. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nature Neurosci. 3, 323–329 (2000).

    CAS  PubMed  Google Scholar 

  95. Stoop, R. & Poo, M.-M. Potentiation of transmitter release by ciliary neurotrophic factor requires somatic signaling. Science 267, 695–699 ( 1995).

    CAS  PubMed  Google Scholar 

  96. Wang, X.-H., Berninger, B. & Poo, M.-M. Localized synaptic actions of neurotrophin-4. J. Neurosci. 18, 4985–4992 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Boulanger, L. & Poo, M.-M. Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nature Neurosci. 2, 346–351 (1999).

    CAS  PubMed  Google Scholar 

  98. Boulanger, L. & Poo, M.-M. Gating of BDNF-induced synaptic potentiation by cAMP. Science 284, 1982– 1984 (1999).

    CAS  PubMed  Google Scholar 

  99. McAllister, A. K., Katz, L. C. & Lo, D. C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17, 1057– 1064 (1996).

    CAS  PubMed  Google Scholar 

  100. Meyer-Franke, A., Kaplan, M. R., Pfrieger, F. W. & Barres, B. A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819 ( 1995).

    CAS  PubMed  Google Scholar 

  101. Shaywitz, A. J. & Greenberg, M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals . Annu. Rev. Biochem. 68, 821– 861 (1999).

    CAS  PubMed  Google Scholar 

  102. Hoeker, V., Shewan, D., Tessier-Lavigne, M., Poo, M.-M. & Holt, C. Conversion of netrin-1 induced attraction to repulsion by laminin-1. Nature 401, 69 –73 (1999).

    Google Scholar 

  103. Korte, M. et al. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc. Natl Acad. Sci. USA 93, 12547– 12552 (1996).This report provided the critical evidence for the requirement of BDNF in the induction of long-term potentiation in the CA1 region of the hippocampus.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Patterson, S. L. et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16 , 1137–1145 (1996).

    CAS  PubMed  Google Scholar 

  105. Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 ( 1996).

    CAS  PubMed  Google Scholar 

  106. Kang, H., Welcher, A. A., Shelton, D. & Schuman, E. M. Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19, 653– 664 (1997).

    CAS  PubMed  Google Scholar 

  107. Chen, G., Kolbeck, R., Barde, Y. A., Bonhoeffer, T. & Kossel, A. Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J. Neurosci. 19, 7983–7990 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hall, J., Thomas, K. L. & Everitt, B. J. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nature Neurosci. 3, 533–535 ( 2000).

    CAS  PubMed  Google Scholar 

  109. Akaneya, Y., Tsumoto, T. & Hatanaka, H. Brain-derived neurotrophic factor blocks long-term depression in rat visual cortex. J. Neurophysiol. 76, 4198–4201 (1996).

    CAS  PubMed  Google Scholar 

  110. Huber, K. M., Sawtell, N. B. & Bear, M. F. Brain-derived neurotrophic factor alters the synaptic modification threshold in visual cortex. Neuropharmacology 37, 571–579 (1998).

    CAS  PubMed  Google Scholar 

  111. Kinoshita, S. et al. Brain-derived neurotrophic factor prevents low-frequency inputs from inducing long-term depression in the developing visual cortex. J. Neurosci. 19, 2122–2130 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Korte, M., Kang, H., Bonhoeffer, T. & Schuman, E. A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology 37, 553–559 ( 1998).

    CAS  PubMed  Google Scholar 

  113. Trommald, M., Hulleberg, G. & Andersen, P. Long-term potentiation associated with new excitatory spine synapses on rat dentate granule cell. Learn. Mem. 3, 218–228 (1996).

    CAS  PubMed  Google Scholar 

  114. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    CAS  PubMed  Google Scholar 

  115. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    CAS  PubMed  Google Scholar 

  116. Toni, N., Buchs, P. A., Nikonenko, L., Bron, C. R. &Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 ( 1999).

    CAS  PubMed  Google Scholar 

  117. Hubel, D. H. & Wiesel, T. N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. Royal Soc. Lond. B 198, 1–59 (1977).

    CAS  Google Scholar 

  118. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133– 1138 (1996).

    CAS  PubMed  Google Scholar 

  119. Maffei, L., Berardi, N., Domenici, L., Parisi, V. & Pizzorusso, T. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J. Neurosci. 12, 4651– 4662 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cabelli, R. J., Hohn, A. & Shatz, C. J. Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267, 1662– 1666 (1995).

    CAS  PubMed  Google Scholar 

  121. Cellerino, A. & Maffei, L. The action of neurotrophins in the development and plasticity of the visual cortex. Prog. Neurobiol. 49, 53–71 ( 1996).

    CAS  PubMed  Google Scholar 

  122. Cabelli, R. J., Shelton, D. L., Segal, R. A & Shatz, C. J. Blockade of endogenous ligands of TrkB inhibits formation of ocular dominance columns. Neuron 19, 63– 76 (1997).

    CAS  PubMed  Google Scholar 

  123. Zhang, L., Tao, H.-Z., Holt, C., Harris, W. & Poo, M.-M. A critical window in the cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank A. Schinder and B. Benedikt for helpful discussions and comments. Work in the author's laboratory was supported by a grant from NIH.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

NGF

BDNF

NT-3

NT-4/5

NT-6

p75

TrkA

TrkB

TrkC

CREB

neuregulin

agrin

synapsin

synaptophysin

synaptobrevin

ENCYCLOPEDIA OF LIFE SCIENCES

Axon transport

Neural activity and the development of brain circuits

Long-term potentiation

Long-term depression and de-potentiation

Dendrites

Trophic support

Glossary

EPITOPE-TAGGED MOLECULE

A molecule labelled with the immunological determinant of an antigen for its subsequent localization with specific antibodies.

SYNAPTOSOMES

Discrete particles formed from the axon terminals upon brain homogenization, in which the main structural presynaptic features are preserved.

COLCHICINE

Alkaloid used to inhibit the polymerization of tubulin and cause the depolymerization of microtubules.

TETANUS TOXIN

Protein from Clostridium tetani that blocks synaptic exocytosis of specific synaptic vesicle proteins, such as synaptobrevin.

VERATRIDINE

Alkaloid that affects action potential generation by stabilizing sodium channels in the open state.

QUANTAL SIZE

The synaptic response elicited by a single vesicle of transmitter as determined by postsynaptic factors such as the number and affinity of receptors.

DOMINANT-NEGATIVE MOLECULE

A mutant molecule capable of interacting with the wild-type form to make an inactive complex.

FILOPODIA

Thin protrusions from a cell, which usually contain microfilaments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poo, Mm. Neurotrophins as synaptic modulators. Nat Rev Neurosci 2, 24–32 (2001). https://doi.org/10.1038/35049004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35049004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing