Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin

Abstract

Rho GTPases control actin reorganization and many other cellular functions. Guanine nucleotide-exchange factors (GEFs) activate Rho GTPases by promoting their exchange of GDP for GTP. Trio is a unique Rho GEF, because it has separate GEF domains, GEFD1 and GEFD2, that control the GTPases RhoG/Rac1 and RhoA, respectively. Dbl-homology (DH) domains that are common to GEFs catalyse nucleotide exchange, and pleckstrin-homology (PH) domains localize Rho GEFs near their downstream targets. Here we show that Trio GEFD1 interacts through its PH domain with the actin-filament-crosslinking protein filamin, and localizes with endogenous filamin in HeLa cells. Trio GEFD1 induces actin-based ruffling in filamin-expressing, but not filamin-deficient, cells and in cells transfected with a filamin construct that lacks the Trio-binding domain. In addition, Trio GEFD1 exchange activity is not affected by filamin binding. Our results indicate that filamin, as a molecular target of Trio, may be a scaffold for the spatial organization of Rho-GTPase-mediated signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trio GEFD1 interacts specifically with filamin A.
Figure 2: Trio GEFD1 binds to filamin in vitro.
Figure 3: Localization of Trio and filamin in Trio GEFD1-induced membrane ruffles.
Figure 4: Filamin A expression is required for Trio GEFD1-induced actin-cytoskeleton modification.
Figure 5: The capacity of Trio GEFD1 to remodel the actin cytoskeleton is directly linked to its binding to filamin.
Figure 6: Filamin is dispensable for Trio GEFD1-elicited JNK stimulation.
Figure 7: Filamin does not affect the GDP/GTP exchange activity of Trio GEFD1.

Similar content being viewed by others

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  2. Nobes, C. D. & Hall, A. Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem. Soc. Trans. 23, 456–459 (1995).

    Article  CAS  Google Scholar 

  3. Gauthier-Rouviere, C. et al. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs. Mol. Biol. Cell. 9, 1379 –1394 (1998).

    Article  CAS  Google Scholar 

  4. Aspenstrom, P. Effectors for the Rho GTPases. Curr. Opin. Cell Biol. 11, 95–102 (1999).

    Article  CAS  Google Scholar 

  5. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295 –2322 (1997).

    Article  CAS  Google Scholar 

  6. Whitehead, I. P., Campbell, S., Rossman, K. L. & Der, C. J. Dbl family proteins. Biochim. Biophys. Acta 1332, F1–F23 (1997).

    CAS  PubMed  Google Scholar 

  7. Stam, J. C. & Collard, J. G. The DH protein family, exchange factors for Rho-like GTPases. Prog. Mol. Subcell. Biol. 22, 51–83 ( 1999).

    Article  CAS  Google Scholar 

  8. Debant, A. et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl Acad. Sci. USA 93, 5466–5471 (1996).

    Article  CAS  Google Scholar 

  9. Bellanger, J. M. et al. The two guanine nucleotide exchange factor domains of Trio link the Rac1 and the RhoA pathways in vivo. Oncogene 16, 147–152 (1998).

    Article  CAS  Google Scholar 

  10. Blangy, A. et al. TrioGEF1 controls Rac- and Cdc42-dependent cell structures through direct activation of RhoG. J. Cell Sci. 113 , 729–739 (2000).

    CAS  PubMed  Google Scholar 

  11. Liebl, E. C. et al. Dosage-sensitive, reciprocal genetic interactions between the Abl tyrosine kinase and the putative GEF trio reveal trio's role in axon pathfinding. Neuron 26, 107– 118 (2000).

    Article  CAS  Google Scholar 

  12. Newsome, T. P. et al. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 101, 283–294 (2000).

    Article  CAS  Google Scholar 

  13. Awasaki, T. et al. The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension. Neuron 26, 119–131 (2000).

    Article  CAS  Google Scholar 

  14. Bateman, J., Shu, H. & Van Vactor, D. The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo. Neuron 26, 93–106 (2000).

    Article  CAS  Google Scholar 

  15. Steven, R. et al. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92 , 785–795 (1998).

    Article  CAS  Google Scholar 

  16. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  17. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245– 248 (1996).

    Article  CAS  Google Scholar 

  18. Lawler, S. Regulation of actin dynamics: the LIM kinase connection. Curr. Biol. 9, R800–R802 ( 1999).

    Article  CAS  Google Scholar 

  19. Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M. & Schwartz, M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79, 507 –513 (1994).

    Article  CAS  Google Scholar 

  20. Brotschi, E. A., Hartwig, J. H. & Stossel, T. P. The gelation of actin by actin-binding protein. J. Biol. Chem. 253, 8988– 8993 (1978).

    CAS  PubMed  Google Scholar 

  21. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H. & Stossel, T. P. The small GTPase RalA targets filamin to induce filopodia. Proc. Natl Acad. Sci. USA 96, 2122–2128 ( 1999).

    Article  CAS  Google Scholar 

  22. Machesky, L. M. & Gould, K. L. The Arp2/3 complex: a multifunctional actin organizer. Curr. Opin. Cell Biol. 11, 117–121 (1999).

    Article  CAS  Google Scholar 

  23. Ohta, Y., Stossel, T. P. & Hartwig, J. H. Ligand-sensitive binding of actin-binding protein to immunoglobulin G Fc receptor I (Fc gamma RI). Cell 67, 275–282 (1991).

    Article  CAS  Google Scholar 

  24. Marti, A. et al. Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-α activation of SAPK in melanoma cells. J. Biol. Chem. 272, 2620–2628 (1997).

    Article  CAS  Google Scholar 

  25. Sharma, C. P., Ezzell, R. M. & Arnaout, M. A. Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18. J. Immunol. 154, 3461–3470 (1995).

    CAS  PubMed  Google Scholar 

  26. Gorlin, J. B. et al. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J. Cell Biol. 111 , 1089–1105 (1990).

    Article  CAS  Google Scholar 

  27. Sardet, C. et al. E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc. Natl Acad. Sci. USA 92, 2403–2407 ( 1995).

    Article  CAS  Google Scholar 

  28. Lebart, M. C., Mejean, C., Roustan, C. & Benyamin, Y. Further characterization of the alpha-actinin-actin interface and comparison with filamin-binding sites on actin. J. Biol. Chem. 268, 5642–5648 (1993).

    CAS  PubMed  Google Scholar 

  29. Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325– 327 (1992).

    Article  CAS  Google Scholar 

  30. Stam, J. C. et al. Targeting of Tiam1 to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain. J. Biol. Chem. 272, 28447–28454 (1997).

    Article  CAS  Google Scholar 

  31. Rebecchi, M. J. & Scarlata, S. Pleckstrin homology domains: a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 27, 503–528 (1998).

    Article  CAS  Google Scholar 

  32. Liu, X. et al. NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Cell 95, 269–277 (1998).

    Article  CAS  Google Scholar 

  33. Touhara, K., Inglese, J., Pitcher, J. A., Shaw, G. & Lefkowitz, R. J. Binding of G protein beta gamma-subunits to pleckstrin homology domains. J. Biol. Chem. 269, 10217–10220 (1994).

    CAS  PubMed  Google Scholar 

  34. Yao, L. et al. Pleckstrin homology domains interact with filamentous actin. J. Biol. Chem. 274, 19752–19761 (1999).

    Article  CAS  Google Scholar 

  35. Umikawa, M. et al. Association of frabin with the actin cytoskeleton is essential for microspike formation through activation of Cdc42 small G protein. J. Biol. Chem. 274, 25197–25200 (1999).

    Article  CAS  Google Scholar 

  36. Ott, I., Fischer, E. G., Miyagi, Y., Mueller, B. M. & Ruf, W. A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280. J. Cell Biol. 140, 1241– 1253 (1998).

    Article  CAS  Google Scholar 

  37. Zhang, W., Han, S. W., McKeel, D. W., Goate, A. & Wu, J. Y. Interaction of presenilins with the filamin family of actin-binding proteins. J. Neurosci. 18, 914–922 (1998).

    Article  CAS  Google Scholar 

  38. Loo, D. T., Kanner, S. B. & Aruffo, A. Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. J. Biol. Chem. 273, 23304–23312 (1998).

    Article  CAS  Google Scholar 

  39. Fox, J. W. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325 (1998).

    Article  CAS  Google Scholar 

  40. Letourneau, P. C. & Shattuck, T. A. Distribution and possible interactions of actin-associated proteins and cell adhesion molecules of nerve growth cones. Development 105, 505–519 (1989).

    CAS  PubMed  Google Scholar 

  41. Luo, L., Jan, L. Y. & Jan, Y. N. Rho family GTP-binding proteins in growth cone signalling . Curr. Opin. Neurobiol. 7, 81– 86 (1997).

    Article  CAS  Google Scholar 

  42. Hartwig, J. H. et al. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets . Cell 82, 643–653 (1995).

    Article  CAS  Google Scholar 

  43. Machesky, L. M. & Hall, A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J. Cell Biol. 138, 913– 926 (1997).

    Article  CAS  Google Scholar 

  44. Vidal, M., Braun, P., Chen, E., Boeke, J. D. & Harlow, E. Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system . Proc. Natl Acad. Sci. USA 93, 10321– 10326 (1996).

    Article  CAS  Google Scholar 

  45. Astier, C., Raynaud, F., Lebart, M. C., Roustan, C. & Benyamin, Y. Binding of a native titin fragment to actin is regulated by PIP2. FEBS Lett. 429, 95–98 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Schmidt and S. Estrach for discussions, S. Diriong for technical assistance and P. Travo, Head of the CRBM Integrated Imaging Facility, for interest and support. Confocal analysis was carried out at the Centre Regional d'Imagerie Cellulaire, Montpellier, with the help of N. Lautredou. This work was funded by CNRS institutional grants, contracts from the Ligue Nationale contre le Cancer, the Association pour la Recherche contre le Cancer, and USPHS NIH grant HL19429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Debant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellanger, JM., Astier, C., Sardet, C. et al. The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nat Cell Biol 2, 888–892 (2000). https://doi.org/10.1038/35046533

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046533

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing