Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Human cancer cell lines: fact and fantasy

Abstract

Cancer cell lines are used in many biomedical research laboratories. Why, then, are they often described as unrepresentative of the cells from which they were derived? Here, I argue that they have been unjustly accused. Under the right conditions, and with appropriate controls, properly authenticated cancer cell lines retain the properties of the cancers of origin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA profiling of short tandem repeats.

Similar content being viewed by others

References

  1. O'Hare, M. J. in Human Cancer in Primary Culture (ed. Masters, J. R. W.) 271– 286 (Kluwer Academic, Dordrecht, 1991).

    Book  Google Scholar 

  2. Hsu, M.-Y., Elder, D. A. & Herlyn, M. in Human Cell Culture Volume 1, Cancer Cell Lines Part 1 (eds Masters, J. R. W. & Palsson, B.) 259– 274 (Kluwer Academic, Dordrecht, 1999).

    Google Scholar 

  3. Lansford, C. D. et al. in Human Cell Culture Volume 2, Cancer Cell Lines Part 2 (eds Masters, J. R. W. & Palsson, B.) 185–255 (Kluwer Academic, Dordrecht, 1999).

    Google Scholar 

  4. Fogh, J., Fogh, J. M. & Orfeo, T. One hundred and twenty-seven cultured human tumour cell lines producing tumours in nude mice. J. Natl Cancer Inst. 59, 221–226 (1977).

    Article  CAS  Google Scholar 

  5. Wistuba, I. I. et al. Comparison of features of human breast cancer cell lines and their corresponding tumours. Clin. Cancer Res. 4, 2931–2938 (1998).

    CAS  PubMed  Google Scholar 

  6. Wistuba, I. I. et al. Comparison of features of human lung cancer cell lines and their corresponding tumours. Clin. Cancer Res. 5, 991–1000 (1999).

    CAS  PubMed  Google Scholar 

  7. Drexler, H. G. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 12, 845–859 ( 1998).

    Article  CAS  Google Scholar 

  8. Drexler, H. G. et al. p53 alterations in human leukemia-lymphoma cell lines: in vitro artefact or prerequisite for cell immortalization? Leukemia 14, 198–206 ( 2000).

    Article  CAS  Google Scholar 

  9. Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227 –235 (2000).

    Article  CAS  Google Scholar 

  10. Walker, M. C., Parris, C. N. & Masters, J. R. W. Differential sensitivities to chemotherapeutic drugs between testicular and bladder cancer cells. J. Natl Cancer Inst 79, 213–216 ( 1987).

    CAS  PubMed  Google Scholar 

  11. Knuechel, R. & Masters, J. R. W. in Human Cell Culture Volume 1, Cancer Cell Lines Part 1 (eds Masters, J. R. W. & Palsson, B.) 213–230 (Kluwer Academic, Dordrecht, 1999).

    Google Scholar 

  12. UKCCCR guidelines for the use of cell lines in cancer research. Br. J. Cancer 82, 1495– 1509 (2000).

  13. Dirks, W. G., MacLeod, R. A. F. & Drexler, H. G. ECV304 (endothelial) is really T24 (bladder carcinoma): cell line cross-contamination at source. In Vitro Cell Dev. Biol. Anim. 35, 558–559 ( 1999).

    Article  CAS  Google Scholar 

  14. Gartler, S. M. Genetic markers as tracers in cell culture. Natl Cancer Inst. Monogr. 26, 167–195 ( 1967).

    CAS  PubMed  Google Scholar 

  15. Gold, M. A Conspiracy of Cells. One Woman's Immortal Legacy and the Scandal It Caused (State University of New York, Albany, 1986).

    Google Scholar 

  16. Nelson-Rees, W. A., Flandermeyer, R. R. & Hawthorne, P. K. Banded marker chromosomes as indicators of intraspecies cellular contamination. Science 184, 1093 (1974).

    Article  CAS  Google Scholar 

  17. Nelson-Rees, W. A., Daniels, D. W. & Flandermeyer, R. R. Cross-contamination of cells in culture. Science 212, 446–452 ( 1981).

    Article  CAS  Google Scholar 

  18. Gey, G. O., Coffman, W. D. & Kubicek, M. T. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12, 264–265 (1952).

    Google Scholar 

  19. Markovic, O. & Markovic, N. Cell cross-contamination in cell cultures: the silent and neglected danger. In Vitro Cell Dev. Biol. Anim. 34, 1–8 ( 1998).

    Article  CAS  Google Scholar 

  20. MacLeod, R. A. F. et al. Widespread intraspecies cross-contamination of human tumour cell lines. Int. J. Cancer 83, 555– 563 (1999).

    Article  CAS  Google Scholar 

  21. MacLeod, R. A. F. & Drexler, H. G. in Human Cell Culture Volume 3, Leukemias and Lymphomas (eds Masters, J. R. W. & Palsson, B.) 373–399 (Kluwer Academic, Dordrecht, 2000).

    Google Scholar 

  22. Povey, S., Hopkinson, D. A., Harris, H. & Franks, L. M. Characterisation of human cell lines and differentiation from HeLa by enzyme typing. Nature 264, 60– 63 (1976).

    Article  CAS  Google Scholar 

  23. O'Toole, C. M., Povey, S., Hepburn, P. & Franks, L. M. Identity of some human bladder cancer cell lines. Nature 301, 429–430 (1981).

    Article  Google Scholar 

  24. Gilbert, D. A. et al. Application of DNA fingerprints for cell line individualization . Am. J. Hum. Genet. 47, 499– 514 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Freshney, R. I. Culture of Animal Cells. A Manual of Basic Technique 4th edn (Wiley-Liss, New York, 2000).

    Google Scholar 

  26. Drexler, H. G. & Uphoff, C. C. in The Encyclopedia of Cell Technology (eds Spier, R. E., Griffiths E. & Scragg, A. H.) 609–627 (Wiley, New York, 2000).

    Google Scholar 

  27. Hay, R. J., Macy, M. L. & Chen, T. R. Mycoplasma infection of cultured cells. Nature 339, 487–499 ( 1989).

    Article  CAS  Google Scholar 

  28. Virmani, A. K. et al. Promoter methylation and silencing of the retinoic acid receptor-β gene in lung carcinomas. J. Natl Cancer Inst. 92, 1303–1307 (2000).

    Article  CAS  Google Scholar 

  29. Virmani, A. K. et al. Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes Chrom. Cancer 21, 308–319 ( 1998).

    Article  CAS  Google Scholar 

  30. Shivapurkar, N. et al. Multiple regions of chromosome 4 demonstrating allelic losses in breast carcinomas. Cancer Res. 59, 3576 –3580 (1999).

    CAS  PubMed  Google Scholar 

  31. Masters, J. R. W. & Lakhani, S. How microarrays can help cancer patients. Nature 404, 921 (2000).

    Article  CAS  Google Scholar 

  32. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  33. Schaeffer, W. I. Usage of vertebrate, invertebrate and plant cell, tissue and organ culture terminology. In vitro 20, 19– 24 (1984).

    Article  CAS  Google Scholar 

  34. Jat, P. S. & Sharp, P. A. Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen are growth restricted at the nonpermissive temperature. Mol. Cell. Biol. 9, 1672– 1681 (1989).

    Article  CAS  Google Scholar 

  35. Stamps, A. C., Davies, S. C., Burman, J. & O'Hare, M. J. Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct . Int. J. Cancer 57, 865– 874 (1994).

    Article  CAS  Google Scholar 

  36. Simon, L. V., Beauchamp, J. R., O'Hare, M. & Olsen, I. Establishment of long-term myogenic cultures from patients with Duchenne muscular dystrophy by retroviral transduction of a temperature-sensitive SV40 large T antigen. Exp. Cell Res. 224, 264– 271 (1996).

    Article  CAS  Google Scholar 

  37. Thomson, J. A., Pilotti, V., Stevens, P., Ayres, K. L. & Debenham, P. G. Validation of short tandem repeat analysis for the investigation of cases of disputed paternity. Forensic Sci. Int. 100, 1–16 ( 1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Alan Entwistle, Ludwig Institute for Cancer Research, University College London for help preparing the time-lapse movies and Jim Thomson, Laboratory of the Government Chemist, London, UK for providing images for Figure 1.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

FURTHER INFORMATION

Laboratory of the Government Chemist

German Collection of Microorganisms and Cell Cultures

Society for In Vitro Biology

http://www.nature.com/nrm/journal/v1/n3/suppinfo/nrm1200_233a_si_fs.html

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masters, J. Human cancer cell lines: fact and fantasy. Nat Rev Mol Cell Biol 1, 233–236 (2000). https://doi.org/10.1038/35043102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35043102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing