Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p

Abstract

The p21-activated kinases (PAKs) are effectors for the Rho-family GTPase Cdc42p. Here we define the in vivo function of the kinase activity of the budding yeast PAK Cla4p, using cla4 alleles that are specifically inhibited by a cell-permeable compound that does not inhibit the wild-type kinase. CLA4 kinase inhibition in cells lacking the partially redundant PAK Ste20p causes reversible SWE1-dependent cell-cycle arrest and gives rise to narrow, highly elongated buds in which both actin and septin are tightly polarized to bud tips. Inhibition of Cla4p does not prevent polarization of F-actin, and cytokinesis is blocked only in cells that have not formed a bud before inhibitor treatment; cell polarization and bud emergence are not affected by Cla4p inhibition. Although localization of septin to bud necks is restored in swe1Δ cells, cytokinesis remains defective. Inhibition of Cla4p activity in swe1Δ cells causes a delay of bud emergence after cell polarization, indicating that this checkpoint may mediate an adaptive response that is capable of promoting budding when Cla4p function is reduced. Our data indicate that CLA4 PAK activity is required at an early stage of budding, after actin polarization and coincident with formation of the septin ring, for early bud morphogenesis and assembly of a cytokinesis site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cla4 alleles that confer sensitivity to 1NM-PP1.
Figure 2: Phenotypes associated with inhibition of Cla4p.
Figure 3: Effect of Cla4p inhibition on cytokinesis and bud emergence.
Figure 4: Phenotypic variation among cla4-75 ts degron strains.
Figure 5: Phenotype of 1NM-PP1-treated cla4-as3 swe1Δ cells.
Figure 6: Reversibility of Cla4p inhibition.

Similar content being viewed by others

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  2. Bagrodia, S. & Cerione, R. A. Pak to the future. Trends Cell Biol. 9, 350–355 (1999).

    Article  CAS  Google Scholar 

  3. Adams, A. E., Johnson, D. I., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111, 131–142 (1990).

    Article  CAS  Google Scholar 

  4. Kozminski, K. G., Chen, A. J., Rodal, A. A. & Drubin, D. G. Functions and functional domains of the GTPase Cdc42p. Mol. Biol. Cell 11, 339–354 (2000).

    Article  CAS  Google Scholar 

  5. Field, C. M. & Kellogg, D. Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol. 9, 387–394 (1999).

    Article  CAS  Google Scholar 

  6. Longtine, M. S. et al. The septins: roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 8, 106–119 (1996).

    Article  CAS  Google Scholar 

  7. Longtine, M. S., Fares, H. & Pringle, J. R. Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J. Cell Biol. 143, 719–736 (1998).

    Article  CAS  Google Scholar 

  8. Frazier, J. A. et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749 (1998).

    Article  CAS  Google Scholar 

  9. Peter, M., Neiman, A. M., Park, H. O., van Lohuizen, M. & Herskowitz, I. Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 15, 7046–7059 (1996).

    Article  CAS  Google Scholar 

  10. Cvrckova, F., De Virgilio, C., Manser, E., Pringle, J. R. & Nasmyth, K. Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev. 9, 1817–1830 (1995).

    Article  CAS  Google Scholar 

  11. Benton, B. K., Tinkelenberg, A., Gonzalez, I. & Cross, F. R. Cla4p, a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis. Mol. Cell Biol. 17, 5067–5076 (1997).

    Article  CAS  Google Scholar 

  12. Leberer, E., Dignard, D., Harcus, D., Thomas, D. Y. & Whiteway, M. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components. EMBO J. 11, 4815–4824 (1992).

    Article  CAS  Google Scholar 

  13. Martin, H., Mendoza, A., Rodriguez-Pachon, J. M., Molina, M. & Nombela, C. Characterization of SKM1, a Saccharomyces cerevisiae gene encoding a novel Ste20/PAK-like protein kinase. Mol. Microbiol. 23, 431–444 (1997).

    Article  CAS  Google Scholar 

  14. Eby, J. J. et al. Actin cytoskeleton organization regulated by the PAK family of protein kinases. Curr. Biol. 8, 967–970 (1998).

    Article  CAS  Google Scholar 

  15. Holly, S. P. & Blumer, K. J. PAK-family kinases regulate cell and actin polarization throughout the cell cycle of Saccharomyces cerevisiae. J. Cell Biol. 147, 845–856 (1999).

    Article  CAS  Google Scholar 

  16. Delley, P. A. & Hall, M. N. Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J. Cell Biol. 147, 163–174 (1999).

    Article  CAS  Google Scholar 

  17. Brown, J. L., Jaquenoud, M., Gulli, M. P., Chant, J. & Peter, M. Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11, 2972–2982 (1997).

    Article  CAS  Google Scholar 

  18. Chen, G. C., Kim, Y. J. & Chan, C. S. The Cdc42 GTPase-associated proteins Gic1 and Gic2 are required for polarized cell growth in Saccharomyces cerevisiae. Genes Dev. 11, 2958–2971 (1997).

    Article  CAS  Google Scholar 

  19. Bi, E. et al. Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast. Mol. Biol. Cell 11, 773–793 (2000).

    Article  CAS  Google Scholar 

  20. Bishop, A. C. et al. Design of allele-specific inhibitors to probe protein kinase signaling. Curr. Biol. 8, 257–266 (1998).

    Article  CAS  Google Scholar 

  21. Liu, Y., Shah, K., Yang, F., Witucki, L. & Shokat, K. M. Engineering Src family protein kinases with unnatural nucleotide specificity. Chem. Biol. 5, 91–101 (1998).

    Article  CAS  Google Scholar 

  22. Liu, Y. et al. Structural basis for selective inhibition of Src family kinases by PP1. Chem. Biol. 6, 671–678 (1999).

    Article  CAS  Google Scholar 

  23. Schindler, T. et al. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol. Cell 3, 639–648 (1999).

    Article  CAS  Google Scholar 

  24. Tjandra, H., Compton, J. & Kellogg, D. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Curr. Biol. 8, 991–1000 (1998).

    Article  CAS  Google Scholar 

  25. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  Google Scholar 

  26. Johnston, L. H. & Johnson, A. L. Elutriation of budding yeast. Methods Enzymol. 283, 342–350 (1997).

    Article  CAS  Google Scholar 

  27. Dohmen, R. J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    Article  CAS  Google Scholar 

  28. Lew, D. J. & Reed, S. I. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J. Cell Biol. 129, 739–749 (1995).

    Article  CAS  Google Scholar 

  29. McMillan, J. N. et al. The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol. Cell Biol. 19, 6929–6939 (1999).

    Article  CAS  Google Scholar 

  30. Shulewitz, M. J., Inouye, C. J. & Thorner, J. Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 7123–7137 (1999).

    Article  CAS  Google Scholar 

  31. Lew, D. J. Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 10, 47–53 (2000).

    Article  CAS  Google Scholar 

  32. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    Article  CAS  Google Scholar 

  33. Wu, C., Lytvyn, V., Thomas, D. Y. & Leberer, E. The phosphorylation site for Ste20p-like protein kinases is essential for the function of myosin-I in yeast. J. Biol. Chem. 272, 30623–30626 (1997).

    Article  CAS  Google Scholar 

  34. Lechler, T., Shevchenko, A. & Li, R. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J. Cell Biol. 148, 363–373 (2000).

    Article  CAS  Google Scholar 

  35. Chenevert, J., Corrado, K., Bender, A., Pringle, J. & Herskowitz, I. A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature 356, 77–79 (1992).

    Article  CAS  Google Scholar 

  36. Drubin, D. G., Mulholland, J., Zhu, Z. M. & Botstein, D. Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature 343, 288–290 (1990).

    Article  CAS  Google Scholar 

  37. Guthrie, C. & Fink, G. R. (eds) Guide to Yeast Genetics and Molecular Biology (Academic, San Diego, 1991).

    Google Scholar 

  38. Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  Google Scholar 

  39. Anderson, C. W., Baum, P. R. & Gesteland, R. F. Processing of adenovirus 2-induced proteins. J. Virol. 12, 241–252 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cope, M. J., Yang, S., Shang, C. & Drubin, D. G. Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J. Cell Biol. 144, 1203–1218 (1999).

    Article  CAS  Google Scholar 

  41. Mulholland, J. et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125, 381–391 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Tjandra, D. Kellogg, M. Longtine, M. Shulewitz, J. Thorner, F. Cvrcova, S. Holly and K. Blumer for providing essential strains, plasmids, and antibodies, and S. Biggins and J. Li for assistance with elutriation. We also thank J. Ubersax and members of the Drubin and Barnes laboratories, particularly M. J. T. V. Cope, M. Duncan, K. Kozminski and D. Seikhaus, for helpful discussions. E.L.W. is supported by an American Cancer Society postdoctoral fellowship; support for this work was also provided by a grant from the National Institutes of Health (to D.G.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Drubin.

Additional information

Correspondence and requests for materials should be addressed to D.G.D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, E., Bishop, A., Shokat, K. et al. Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p. Nat Cell Biol 2, 677–685 (2000). https://doi.org/10.1038/35036300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing