Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid rafts and signal transduction

Abstract

Signal transduction is initiated by complex protein–protein interactions between ligands, receptors and kinases, to name only a few. It is now becoming clear that lipid micro-environments on the cell surface — known as lipid rafts — also take part in this process. Lipid rafts containing a given set of proteins can change their size and composition in response to intra- or extracellular stimuli. This favours specific protein–protein interactions, resulting in the activation of signalling cascades.

Key Points

  • Lipid rafts consist of dynamic assemblies of cholesterol and sphingolipids in the exoplasmic leaflet of the lipid bilayer.

  • Lipid rafts can include or exclude proteins selectively, and the raft affinity of a given protein can be modulated by intra- or extracellular stimuli.

  • They are too small to be seen by standard microscope techniques. It is also not possible to isolate lipid rafts in their native state. Detergent-resistant membranes, containing clusters of many rafts, can be isolated by extraction with Triton X-100 or other detergents on ice.

  • Raft association of proteins can be assayed by manipulating the lipid composition of rafts. If cholesterol or sphingolipids are depleted from membranes, lipid rafts are dissociated, and previously associated proteins are no longer in rafts.

  • There is great confusion in the nomenclature for lipid rafts, and Table 2 proposes a new nomenclature.

    Table 2 Raft nomenclature
  • Rafts are involved in signal transduction. Crosslinking of signalling receptors increases their affinity for rafts. Partitioning of receptors into rafts results in a new micro-environment, where their phosphorylation state can be modified by local kinases and phosphatases, modulating downstream signalling.

  • Raft clustering could also be involved in signal transduction. Several rafts coalesce, resulting in amplification of the signal.

  • Some examples for such raft-dependent signalling processes are IgE signalling during the allergic response, T-cell activation and GDNF signalling.

  • Rafts are also necessary for Hedgehog signalling during development but the mechanism is very different. Hedgehog is a membrane-bound ligand and needs to be released from its cell of origin so it can signal to cells several layers away. It can be released from the cell when it is anchored in rafts through its cholesterol moiety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initial signalling events in rafts for a | IgE receptor (FcɛRI)- and b | T-cell antigen receptor (TCR)-mediated signalling.
Figure 2: Models of how signalling could be initiated through raft(s).

Similar content being viewed by others

References

  1. Brown, D. A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 14, 111–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Sankaram, M. B. & Thompson, T. E. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry 29, 10670–10675 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Simons, K. & van Meer, G. Lipid sorting in epithelial cells . Biochemistry 27, 6197– 6202 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Simons, K. & Ikonen, E. Functional rafts in cell membranes . Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Fridriksson, E. K. et al. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38, 8056– 8063 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Schroeder, R., London, E. & Brown, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl Acad. Sci. USA 91, 12130– 12134 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hooper, N. M. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol. Membr. Biol. 16, 145–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Rietveld, A., Neutz, S., Simons, K. & Eaton, S. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J. Biol. Chem. 274, 12049–12054 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Scheiffele, P., Roth, M. G. & Simons, K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G. & Brown, D. A. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J. Biol. Chem. 274, 3910–3917 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929– 942 (1998).The first demonstration that clusters of rafts segregate away from non-raft proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palade, G. E. The fine structure of blood capillaries. J. Appl. Phys. 24, 1424 (1953).

    Google Scholar 

  14. Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1, 445– 458 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parton, R. G. Caveolae and caveolins. Curr. Opin. Cell Biol. 8, 542–548 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Smart, E. J. et al. Caveolins, liquid-ordered domains, and signal transduction . Mol. Cell. Biol. 19, 7289– 7304 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127, 1217–1232 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Parton, R. G., Way, M., Zorzi, N. & Stang, E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol. 136, 137–154 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67 , 199–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Vogel, U., Sandvig, K. & van Deurs, B. Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells. J. Cell Sci. 111, 825–832 ( 1998).

    CAS  PubMed  Google Scholar 

  21. Renkonen, O., Kaarainen, L., Simons, K. & Gahmberg, C. G. The lipid class composition of Semliki forest virus and plasma membranes of the host cells. Virology 46, 318– 326 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. Levis, G. M. & Evangelatos, G. P. Lipid composition of lymphocyte plasma membrane from pig mesenteric lymph node. Biochem. J. 156, 103–110 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Meer, G. Lipid traffic in animal cells. Annu. Rev. Cell Biol. 5, 247–275 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Brugger, B. et al. Segregation from COPI–coated vesicles of sphingomyelin and cholesterol. J. Cell Biol. (in the press).

  25. Keller, P. & Simons, K. Post-Golgi biosynthetic trafficking . J. Cell Sci. 110, 3001– 3009 (1997).

    CAS  PubMed  Google Scholar 

  26. Ledesma, M. D., Simons, K. & Dotti, C. G. Neuronal polarity: essential role of protein–lipid complexes in axonal sorting. Proc. Natl Acad. Sci. USA 95, 3966–3971 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mukherjee, S. & Maxfield, F. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Puri, V. et al. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nature Cell Biol. 1, 386–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Janes, P. W., Ley, S. C. & Magee, A. I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells . J. Cell Biol. 148, 997– 1008 (2000).Individual raft size is measured by photonic force microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394 , 798–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  33. Kenworthy, A. K., Petranova, N. & Edidin, M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533– 544 (1992).A pioneering demonstration that GPI-anchored proteins and influenza haemagglutinin remain associated with sphingolipids and cholesterol after Triton X-100 extraction.

    Article  CAS  PubMed  Google Scholar 

  35. Waugh, M. G., Lawson, D. & Hsuan, J. J. Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. Biochem. J. 337, 591–597 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Webb, Y., Hermida-Matsumoto, L. & Resh, M. D. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 275, 261–270 (2000).Feeding cells with polyunsaturated fatty acids leads to dissociation of doubly acylated proteins from rafts.

    Article  CAS  PubMed  Google Scholar 

  37. Simons, M. et al. Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells. Mol. Biol. Cell 10, 3187–3196 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Field, K. A., Holowka, D. & Baird, B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl Acad. Sci. USA 92, 9201–9205 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sheets, E. D., Holowka, D. & Baird, B. Membrane organization in immunoglobulin E receptor signaling . Curr. Opin. Chem. Biol. 3, 95– 99 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Baird, B., Sheets, E. D. & Holowka, D. How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? Biophys. Chem. 82, 109–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Metzger, H. It's spring, and thoughts turn to… allergies. Cell 97, 287–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Stauffer, T. P. & Meyer, T. Compartmentalized IgE receptor-mediated signal transduction in living cells. J. Cell Biol. 139, 1447–1454 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holowka, D., Sheets, E. D. & Baird, B. Interactions between FcɛRI and lipid raft components are regulated by the actin cytoskeleton. J. Cell Sci. 113, 1009–1019 (2000).

    CAS  PubMed  Google Scholar 

  45. Sheets, E. D., Holowka, D. & Baird, B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcɛRI and their association with detergent-resistant membranes. J. Cell Biol. 145, 877– 887 (1999).This paper is the culmination of a series of studies showing the role of rafts in IgE receptor signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goitsuka, R. et al. A BASH/SLP-76-related adaptor protein MIST/Clnk involved in IgE receptor-mediated mast cell degranulation. Int. Immunol. 12, 573–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Janes, P. W., Ley, S. C., Magee, A. I. & Kabouridis, P. S. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin. Immunol. 12, 23–34 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  48. Langlet, C., Bernard, A. M., Drevot, P. & He, H. T. Membrane rafts and signaling by the multichain immune recognition receptors . Curr. Opin. Immunol. 12, 250– 255 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, W., Trible, R. P. & Samelson, L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation . Immunity 9, 239–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Brdicka, T., Cerny, J. & Horejsi, V. T cell receptor signalling results in rapid tyrosine phosphorylation of the linker protein LAT present in detergent-resistant membrane microdomains. Biochem. Biophys. Res. Commun. 248, 356–360 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Lin, J., Weiss, A. & Finco, T. S. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem. 274 , 28861–28864 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Moran, M. & Miceli, M. C. Engagement of GPI-linked CD48 contributes to TCR signals and cytoskeletal reorganization: a role for lipid rafts in T cell activation. Immunity 9, 787–796 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Stefanova, I., Horejsi, V., Ansotegui, I. J., Knapp, W. & Stockinger, H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–1019 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723– 732 (1998).Detailed characterization of several proteins participating in T-cell activation and their raft association.

    Article  CAS  PubMed  Google Scholar 

  56. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains . Science 283, 680–682 (1999).Antibody-coated beads are used to activate clustering of raft components in T-cell signalling.

    Article  CAS  PubMed  Google Scholar 

  57. Cary, L. A. & Cooper, J. A. Molecular switches in lipid rafts . Nature 404, 945–947 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Lanzavecchia, A., Lezzi, G. & Viola, A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1– 4 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. van der Merwe, A. P., Davis, S. J., Shaw, A. S. & Dustin, M. L. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin. Immunol. 12, 5–21 (2000).

    Article  CAS  Google Scholar 

  60. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221– 227 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, W. & Samelson, L. E. The role of membrane-associated adaptors in T cell receptor signalling. Semin. Immunol. 12, 35–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Anderson, H. A., Hiltbold, E. M. & Roche, P. A. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nature Immunol. 1, 156–162 (2000).

    Article  CAS  Google Scholar 

  63. Tansey, M. G., Baloh, R. H., Milbrandt, J. & Johnson, E. M. Jr GFRα-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25, 611– 623 (2000).The demonstration that GDNF signalling is a raft-dependent process.

    Article  CAS  PubMed  Google Scholar 

  64. Poteryaev, D. et al. GDNF triggers a novel ret-independent src kinase family-coupled signaling via a GPI-linked GDNF receptor α1. FEBS Lett. 463, 63–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Trupp, M., Scott, R., Whittemore, S. R. & Ibanez, C. F. Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J. Biol. Chem. 274, 20885–20894 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol. 1, 98–105 (1999). This paper shows that H-Ras signals in rafts and K-Ras signals outside rafts.

    Article  CAS  PubMed  Google Scholar 

  67. Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  68. Incardona, J. P. & Eaton, S. Cholesterol in signal transduction. Curr. Opin. Cell Biol. 12, 193–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Porter, J. A., Young, K. E. & Beachy, P. A. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255– 259 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Pepinsky, R. B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037– 14045 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99, 803–815 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  72. Harder, T. & Simons, K. Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol. 29, 556 –562 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Laux, T. et al. GAP43, MARCKS, and CAP23 modulate PI(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism . J. Cell Biol. 149, 1455– 1472 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pike, L. J. & Miller, J. M. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J. Biol. Chem. 273, 22298– 22304 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  76. Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K. & Hakomori, S. GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate–carbohydrate interaction in mouse melanoma B16 cells. J. Biol. Chem. 273, 9130–9138 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Roper, K., Corbeil, D. & Huttner, W. B. Retention of prominin in microvilli reveals distinct cholesterol–based lipid microdomains within the apical plasma membrane of epithelial cells. Nature Cell Biol. 2, 582–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Mayor, S., Rothberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Parton, R. G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae . J. Histochem. Cytochem. 42, 155– 166 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Fujimoto, T. GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44, 929–941 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Wilson, B. S., Pfeiffer, J. R. & Oliver, J. M. Observing FceRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149, 1131 –1142 (2000).Clear visualization of raft clustering during IgE signalling by immuno-electron microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sargiacomo, M., Sudol, M., Tang, Z. & Lisanti, M. P. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 122, 789–807 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Kurzchalia, T., Hartmann, E. & Dupree, P. Guilt by insolubility: Does a protein's detergent insolubility reflect caveolar location. Trends Cell Biol. 5, 187–189 (1995).

    CAS  PubMed  Google Scholar 

  84. Smart, E. J., Ying, Y. S., Mineo, C. & Anderson, R. G. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl Acad. Sci. USA 92, 10104– 10108 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435–1439 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Stan, R. V. et al. Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae). Mol. Biol. Cell 8 , 595–605 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Oh, P. & Schnitzer, J. E. Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. Toward understanding the basis of purification. J. Biol. Chem. 274, 23144–23154 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Kurzchalia, T. V. & Parton, R. G. Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892– 901 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cheng, P. C., Dykstra, M. L., Mitchell, R. N. & Pierce, S. K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting . J. Exp. Med. 190, 1549– 1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Couet, J., Sargiacomo, M. & Lisanti, M. P. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 272, 30429 –30438 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Mastick, C. C., Brady, M. J. & Saltiel, A. R. Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol. 129, 1523– 1531 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Bruckner, K. et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511 –524 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Bilderback, T. R., Gazula, V. R., Lisanti, M. P. & Dobrowsky, R. T. Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. J. Biol. Chem. 274, 257– 263 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Wary, K. K., Mariotti, A., Zurzolo, C. & Giancotti, F. G. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–634 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Krauss, K. & Altevogt, P. Integrin leukocyte function-associated antigen-1 mediated cell binding can be activated by clustering of membrane rafts. J. Biol. Chem. 274, 36921– 36927 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Shaul, P. W. et al. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 271, 6518– 6522 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Garcia-Cardena, G., Fan, R., Stern, D. F., Liu, J. & Sessa, W. C. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J. Biol. Chem. 271, 27237–27240 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Brown, R. Parton, T. Harder and T. Kurzchalia for critical reading of this manuscript. C. Ibáñez provided helpful discussions on GDNF signalling.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Src kinase

caveolin

IgE

FcɛRI

Lyn

Syk

ZAP-70

PLCγ

LAT

TCR

CD3

Fyn

Vav

Grb2

Lck

GDNF

RET

Ras

Raf

ERK

Hedgehog

Patched

Smoothened

Dispatched

FURTHER INFORMATION

Simons lab homepage

ENCYCLOPEDIA OF LIFE SCIENCES

Lipids

Membrane proteins

Glossary

EXOPLASMIC LEAFLET

Lipid layer facing the extracellular space.

TRANSCYTOSIS

Transport of macromolecules across a cell, consisting of endocytosis of a macromolecule at one side of a monolayer and exocytosis at the other side.

APICAL PLASMA MEMBRANE

The surface of an epithelial cell that faces the lumen.

BASOLATERAL PLASMA MEMBRANE

The surface of an epithelial cell that adjoins underlying tissue.

SOMATODENDRITIC MEMBRANE

The surface of a neuron that surrounds the cell body and dendrites.

BIOSYNTHETIC PATHWAY

Secretory or membrane proteins are inserted into the endoplasmic reticulum. They are then transported through the Golgi to the trans-Golgi network, where they are sorted to their final destination.

ENDOCYTIC PATHWAY

Macromolecules are endocytosed at the plasma membrane. They first arrive in early endosomes, then late endosomes, and finally lysosomes where they are degraded by hydrolases. Recycling back to the plasma membrane from early endosomes also occurs.

SUCROSE GRADIENT CENTRIFUGATION

Allows separation of cellular membranes according to their size and/or density by centrifugation.

GANGLIOSIDES

Anionic glycosphingolipids that carry, in addition to other sugar residues, one or more sialic acid residues.

MAST CELL

A type of leukocyte, of the granulocyte subclass.

BASOPHIL

Polymorphonuclear phagocytic leukocyte of the myeloid series.

METHYL-β-CYCLODEXTRIN

Carbohydrate molecule with a pocket for binding cholesterol.

MAJOR HISTOCOMPATIBILITY COMPLEX

A complex of genetic loci, occurring in higher vertebrates, encoding a family of cellular antigens that help the immune system to recognize self from non-self.

ANTIGEN-PRESENTING CELL

A cell, most often a macrophage or dendritic cell, that presents an antigen to activate a T cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simons, K., Toomre, D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31–39 (2000). https://doi.org/10.1038/35036052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing