Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

YidC mediates membrane protein insertion in bacteria

Abstract

The basic machinery for the translocation of proteins into or across membranes is remarkably conserved from Escherichia coli to humans. In eukaryotes, proteins are inserted into the endoplasmic reticulum using the signal recognition particle (SRP) and the SRP receptor, as well as the integral membrane Sec61 trimeric complex (composed of alpha, beta and gamma subunits)1. In bacteria, most proteins are inserted by a related pathway that includes the SRP homologue Ffh2,3,4,5, the SRP receptor FtsY6,7, and the SecYEG trimeric complex8, where Y and E are related to the Sec61 alpha and gamma subunits, respectively. Proteins in bacteria that exhibit no dependence on the Sec translocase were previously thought to insert into the membrane directly without the aid of a protein machinery9,10. Here we show that membrane insertion of two Sec-independent proteins requires YidC. YidC is essential for E. coli viability and homologues are present in mitochondria and chloroplasts. Depletion of YidC also interferes with insertion of Sec-dependent membrane proteins, but it has only a minor effect on the export of secretory proteins. These results provide evidence for an additional component of the translocation machinery that is specialized for the integration of membrane proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genotype and phenotype of YidC-depletion strain JS7131.
Figure 2: Effect of YidC depletion on the translocation of pre-proteins.
Figure 3: YidC is required for efficient membrane insertion of Sec-independent and Sec-dependent proteins as determined by a protease accessibility assay.
Figure 4: Crosslinking of T7Lep to YidC.

Similar content being viewed by others

References

  1. Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65, 271–303 (1996).

    Article  CAS  Google Scholar 

  2. Phillips, G. J. & Silhavy, T. J. The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359, 744–746 ( 1992).

    Article  ADS  CAS  Google Scholar 

  3. de Gier, J.-W. L. et al. Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal recognition particle. FEBS Lett. 399, 307–309 ( 1996).

    Article  CAS  Google Scholar 

  4. Bernstein, H. D., Zopf, D., Freyman, D. M. & Walter, P. Functional substitution of the signal recognition particle 54kD subunit by its Escherichia coli homolog. Proc. Natl Acad. Sci. USA 90, 5229–5233 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Ulbrandt, N. D., Newitt, J. A. & Bernstein, H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88, 187–196 ( 1997).

    Article  CAS  Google Scholar 

  6. Luirink, J. et al. An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13, 2289–2296 (1994).

    Article  CAS  Google Scholar 

  7. Seluanov, A. & Bibi, E. FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins. J. Biol. Chem. 272, 2053– 2055 (1997).

    Article  CAS  Google Scholar 

  8. Wickner, W. & Leonard, M. R. Escherichia coli preprotein translocase. J. Biol. Chem. 22, 29514– 29516 (1996).

    Article  Google Scholar 

  9. Geller, B. L. & Wickner, W. (1985). M13 procoat inserts into liposomes in the absence of other membrane proteins. J. Biol. Chem. 260, 13281– 13285.

    CAS  PubMed  Google Scholar 

  10. de Gier, J.-W. L. et al. Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli . Proc. Natl Acad. Sci. USA 95, 14646 –14651 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Hell, K., Herrmann, J., Pratje, E., Neupert, W. & Stuart, R. A. Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett. 418, 367–370 (1997).

    Article  CAS  Google Scholar 

  12. Hell, K., Herrmann, J. M., Pratje, E., Neupert, W. & Stuart, R. A. Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc. Natl Acad. Sci. USA 95, 2250–2255 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Sundberg, E. et al. ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9, 717–730 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bonnefoy, N., Chalvet, F., Hamel, P., Slonimski, P. P. & Dujardin, G. Oxa1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J. Mol. Biol. 239, 201 –212 (1994).

    Article  CAS  Google Scholar 

  15. Moore, M., Harrison, M. S., Peterson, E. C. & Henry, R. Chloroplast Oxa1p homolog Albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 275, 1529– 1532 (2000).

    Article  CAS  Google Scholar 

  16. Stuart, R. A. & Neupert, W. Topogenesis of inner membrane proteins in mitochondria. Trends Biol. Sci. 21, 261 –267 (1996).

    Article  CAS  Google Scholar 

  17. Glick, B. S. & von Heijne, G. Saccharomyces cerevisiae mitochondria lack a bacterial-type sec machinery. Protein Sci. 5, 2651–2652 ( 1996).

    Article  CAS  Google Scholar 

  18. Whitley, P. et al. Sec-independent translocation of a 100-residue periplasmic N-terminal tail in the E. coli inner membrane protein proW. EMBO J. 13, 4653–4661 ( 1994).

    Article  CAS  Google Scholar 

  19. Cristobal, S., Scotti, P., Luirink, J., von Heijne, G. & de Gier, J.-W. L. The signal recognition particle-targeting pathway does not necessarily deliver proteins to the Sec-translocase in Escherichia coli. J. Biol. Chem. 274, 20068– 20070 (1999).

    Article  CAS  Google Scholar 

  20. Gilmore, R., Collins, P., Johnson, J., Kellaris, K. & Rapiejko, P. Transcription of full-length and truncated mRNA transcripts to study protein translocation across the endoplasmic reticulum. Methods Cell Biol. 34, 223–237 (1991).

    Article  CAS  Google Scholar 

  21. Martoglio, B., Hofmann, M. W., Brunner, J. & Dobberstein, B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 18 , 207–214 (1995).

    Article  Google Scholar 

  22. Scotti, P. A. et al. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 19, 542–549 (2000).

    Article  CAS  Google Scholar 

  23. Görlich, D., Hartmann, E., Prehn, S. & Rapoport, T. A. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 357, 47–52 (1992).

    Article  ADS  Google Scholar 

  24. Do, H., Falcone, D., Lin, J., Andrews, D. W. & Johnson, A. E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369–378 (1996).

    Article  CAS  Google Scholar 

  25. Platt, R., Drescher, C. D., Park, S. K. & Phillips, G. J. Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid 43, 12–23 ( 2000).

    Article  CAS  Google Scholar 

  26. Hamilton, C. M., Aldea, M., Washburn, B. K., Babitzke, P. & Kushner, S. R. New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol. 171, 4617–4622 ( 1989).

    Article  CAS  Google Scholar 

  27. Graf, R., Brunner, J., Dobberstein, B. & Martoglio, B. in Cell Biology: a Laboratory Handbook 2nd edn, Vol. 4, (ed. Celis, J. E.) 495–501 (Academic, San Diego, 1998).

    Google Scholar 

  28. Brunner, J. Use of photocrosslinkers in cell biology. Trends Cell Biol. 6, 154–157 (1996).

    Article  CAS  Google Scholar 

  29. Cload, S. T., Liu, D. R., Froland, W. A. & Schultz, P. Development of improved tRNAs for in vitro biosynthesis of proteins containing unnatural amino acids. Chem. Biol. 3, 1033–1038 (1996).

    Article  CAS  Google Scholar 

  30. Gold, L. M. & Schweiger, M. in Methods in Enzymology Vol. 20, (eds Moldave, K. & Grossman, L.) 537– 542 (Academic, London and New York, 1971).

    Google Scholar 

Download references

Acknowledgements

We thank P. G. Schultz for the E. coli suppressor tRNAAsn gene, S. R. Kushner for knockout vector pMAK705, J.-W. de Gier for the ProW construct, J. Brunner for the photocrosslinking reagent (Tmd)Phe-pdCpA, and Matthias Muller for advice with the amber suppression studies. This work was supported by an NSF grant (to R.E.D) and by a DFG grant (to A.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross E. Dalbey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuelson, J., Chen, M., Jiang, F. et al. YidC mediates membrane protein insertion in bacteria. Nature 406, 637–641 (2000). https://doi.org/10.1038/35020586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020586

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing