Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release

Abstract

Kinesin undergoes a global folding conformational change from an extended active conformation at high ionic concentrations to a compact inhibited conformation at physiological ionic concentrations. Here we show that much of the observed ATPase activity of folded kinesin is due to contamination with proteolysis fragments that can still fold, but retain an activated ATPase function. In contrast, kinesin that contains an intact IAK-homology region exhibits pronounced inhibition of its ATPase activity (140-fold in 50 mM KCl) and weak net affinity for microtubules in the presence of ATP, resulting from selective inhibition of the release of ADP upon initial interaction with a microtubule. Subsequent processive cycling is only partially inhibited. Fusion proteins containing residues 883–937 of the kinesin α-chain bind tightly to microtubules; exposure of this microtubule-binding site in proteolysed species is probably responsible for their activated ATPase activities at low microtubule concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microtubule-stimulated ATPase activity.
Figure 2: Microtubule binding.

Similar content being viewed by others

References

  1. Vale, R. D. & Fletterick, R. J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777 (1997).

    Article  CAS  Google Scholar 

  2. Hirokawa, N., Noda, Y. & Okada, Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60–73 (1998).

    Article  CAS  Google Scholar 

  3. Kirchner, J., Woehlke, G. & Schliwa, M. Universal and unique features of kinesin motors: insights from a comparison of fungal and animal conventional kinesins. Biol. Chem. 380, 915–921 (1999).

    Article  CAS  Google Scholar 

  4. Diefenbach, R. J., Mackay, J. P., Armati, P. J. & Cunningham, A. L. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663–16670 (1998).

    Article  CAS  Google Scholar 

  5. Verhey, K. J. et al. Light chain-dependent regulation of kinesin’s interaction with microtubules. J. Cell Biol. 143, 1053–1066 (1998).

    Article  CAS  Google Scholar 

  6. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  CAS  Google Scholar 

  7. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    Article  CAS  Google Scholar 

  8. Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995).

    Article  CAS  Google Scholar 

  9. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  Google Scholar 

  10. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  Google Scholar 

  11. Jiang, W., Stock, M., Li, X. & Hackney, D. D. Influence of the kinesin neck domain on dimerization and ATPase kinetics. J. Biol. Chem. 272, 7626–7632 (1997).

    Article  CAS  Google Scholar 

  12. Wagner, M. C., Pfister, K. K., Bloom, G. S. & Brady, S. T. Copurification of kinesin polypeptides with microtubule- stimulated magnesium ATPase activity and kinetic analysis of enzymic properties. Cell Motil. Cytoskeleton 12, 195–215 (1989).

    Article  CAS  Google Scholar 

  13. Hackney, D. D., Levitt, J. D. & Wagner, D. D. Characterization of α2β2 and α2 forms of kinesin. Biochem. Biophys. Res. Comm. 174, 810–815 (1991).

    Article  CAS  Google Scholar 

  14. Jiang, M. Y. & Sheetz, M. P. Cargo-activated ATPAse activity of kinesin. Biophys. J. 68 (Suppl.), 283–285 (1995).

    Google Scholar 

  15. Moraga, D. E. & Murphy, D. B. Kinesin is ‘inactive’ unless bound to a solid support. Mol. Biol. Cell 8, 258a–258a (1997).

    Google Scholar 

  16. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nature Cell Biol. 1, 288–292 (1999).

    Article  CAS  Google Scholar 

  17. Hisanaga, S. et al. The molecular structure of adrenal medulla kinesin. Cell Motil. Cytoskeleton 12, 264–272 (1989).

    Article  CAS  Google Scholar 

  18. Hackney, D. D., Levitt, J. D. & Suhan, J. Kinesin undergoes a 9S to 6S conformational transition. J. Biol. Chem. 267, 8696–8701 (1992).

    CAS  PubMed  Google Scholar 

  19. Stock, M. F. et al. Formation of the compact conformer of kinesin requires a C-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J. Biol. Chem. 274, 14617–14623 (1999).

    Article  CAS  Google Scholar 

  20. Friedman, D. S. & Vale, R. D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biol. 1, 293–297 (1999).

    Article  CAS  Google Scholar 

  21. Navone, F. et al. Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. J. Cell Biol. 117, 1263–1275 (1992).

    Article  CAS  Google Scholar 

  22. Cross, R. A., Jackson, A. P., Citi, S., Kendrick-Jones, J. & Bagshaw, C. R. Active site trapping of nucleotide by smooth and non-muscle myosins. J. Mol. Biol. 203, 173–181 (1988).

    Article  CAS  Google Scholar 

  23. Cheng, J. Q., Jiang, W. & Hackney, D. D. Interaction of mant-adenosine nucleotides and magnesium with kinesin. Biochemistry 37, 5288–5295 (1998).

    Article  CAS  Google Scholar 

  24. Hackney, D. D. The rate limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule. J. Biol. Chem. 269, 16508–16511 (1994).

    CAS  PubMed  Google Scholar 

  25. Kirchner, J., Seiler, S., Fuchs, S. & Schliwa, M. Functional anatomy of the kinesin molecule in vivo. EMBO J. 18, 4404–4413 (1999).

    Article  CAS  Google Scholar 

  26. Hackney, D. D. Isolation of kinesin using initial batch ion exchange. Methods Enzymol. 196, 175–181 (1991).

    Article  CAS  Google Scholar 

  27. Huang, T.-G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J. Biol. Chem. 269, 16493–16501 (1994).

    CAS  PubMed  Google Scholar 

  28. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  29. Neuhoff, V., Arold, N., Taube, D. & Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brillant Blue G-250 and R-250. Electrophoresis 9, 255–262 (1988).

    Article  CAS  Google Scholar 

  30. Ingold, A. L., Cohn, S. A. & Scholey, J. M. Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains. J. Cell Biol. 107, 2659–2670 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Scholey for hybridoma cells expressing the SUK4 antibody. This work was supported by NIH grant NS28562.

Correspondence and requests for materials should be addressed to D.D.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Hackney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackney, D., Stock, M. Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release. Nat Cell Biol 2, 257–260 (2000). https://doi.org/10.1038/35010525

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing