Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b

Abstract

The signalling thresholds of antigen receptors and co-stimulatory receptors determine immunity or tolerance to self molecules1. Changes in co-stimulatory pathways can lead to enhanced activation of lymphocytes and autoimmunity, or the induction of clonal anergy2. The molecular mechanisms that maintain immunotolerance in vivo and integrate co-stimulatory signals with antigen receptor signals in T and B lymphocytes are poorly understood. Members of the Cbl/Sli family of molecular adaptors function downstream from growth factor and antigen receptors3,4,5. Here we show that gene-targeted mice lacking the adaptor Cbl-b develop spontaneous autoimmunity characterized by auto-antibody production, infiltration of activated T and B lymphocytes into multiple organs, and parenchymal damage. Resting cbl-b -/- lymphocytes hyperproliferate upon antigen receptor stimulation, and cbl-b-/- T cells display specific hyperproduction of the T-cell growth factor interleukin-2, but not interferon-γ or tumour necrosis factor-α. Mutation of Cbl-b uncouples T-cell proliferation, interleukin-2 production and phosphorylation of the GDP/GTP exchange factor Vav1 from the requirement for CD28 co-stimulation. Cbl-b is thus a key regulator of activation thresholds in mature lymphocytes and immunological tolerance and autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene targeting of cbl-b.
Figure 2: cbl-b-/- mice develop spontaneous, generalized autoimmunity.
Figure 3: Self-reactive and hyperresponsive lymphocytes in cbl-b-/- mice.
Figure 4: The cbl-b mutation uncouples T-cell proliferation and IL-2 production from CD28 co-stimulation.
Figure 5: Cbl-b negatively regulates Vav1 tyrosine phosphorylation.

Similar content being viewed by others

References

  1. Healy, J. I. & Goodnow, C. C. Positive versus negative signalling by lymphocyte antigen receptors. Annu. Rev. Immunol. 16, 645–670 (1998).

    Article  CAS  Google Scholar 

  2. Rudd, C. E. Adaptors and molecular scaffolds in immune cell signalling. Cell 96, 5–8 (1999 ).

    Article  CAS  Google Scholar 

  3. Cory, G. O. C. et al. The protein product of the c-cbl protooncogene is phosphorylated after B cell receptor stimulation and binds the SH3 domain of Bruton's tyrosine kinase. J. Exp. Med. 182, 611– 615 (1995).

    Article  CAS  Google Scholar 

  4. Sawasdikosol, S. et al. Tyrosine-phosphorylated Cbl binds to Crk after T cell activation. J. Immunol. 157, 110–116 (1996).

    CAS  PubMed  Google Scholar 

  5. Keane, M. M., RiveroLezcano, O. M., Mitchell, J. A., Robbins, K. C. & Lipkowitz, S. Cloning and characterization of cbl-b: a SH3 binding protein with homology to the c-cbl proto-oncogene. Oncogene 10, 2367–2377 ( 1995).

    CAS  PubMed  Google Scholar 

  6. Bustelo, X. R., Crespo, P., LopezBarahona, M., Gutkind, J. S. & Barbacid, M. Cbl-b, a member of the Sli-1/c-Cbl protein family, inhibits Vav-mediated c-Jun N-terminal kinase activation. Oncogene 15, 2511–2520 (1997).

    Article  CAS  Google Scholar 

  7. Elly, C. et al. Tyrosine phosphorylation and complex formation of Cbl-b upon T cell receptor stimulation. Oncogene 18, 1147– 1156 (1999).

    Article  CAS  Google Scholar 

  8. Zhang, Z., Elly, C., Qiu, L., Altman, A. & Liu, Y. -C. A direct interaction between the adaptor protein Cbl-b and the kinase Zap-70 induces a positive signal in T cells. Curr. Biol. 9 , 203–206 (1999).

    Article  CAS  Google Scholar 

  9. Ludewig, B., Odermatt, B., Landmann, S., Hengartner, H. & Zinkernagel, R. M. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med. 188, 1493–1501 (1998).

    Article  CAS  Google Scholar 

  10. Kratz, A., CamposNeto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med. 183, 1461–1472 (1996).

    Article  CAS  Google Scholar 

  11. Sanderson, R. D., Lalor, P. & Bernfield, M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Reg. 1, 27–35 (1989).

    Article  CAS  Google Scholar 

  12. Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell Biol. 18, 4872–4882 (1998).

    Article  CAS  Google Scholar 

  13. Naramura, M., Kole, H. K., Hu, R. J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547–15552 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Radvanyi, L. G., Mills, G. B. & Miller, R. G. Religation of the T cell receptor after primary activation of mature T cells inhibits proliferation and induces apoptotic cell death. J. Immunol. 150, 5704– 5715 (1993).

    CAS  PubMed  Google Scholar 

  15. Bachmann, M. F., Speiser, D. E. & Ohashi, P. S. Functional maturation of an antiviral cytotoxic T-cell response. J. Virol. 71, 5764– 5768 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boussiotis, V. A., Gribben, J. G., Freeman, G. J. & Nadler, L. M. Blockade of the CD28 co-stimulatory pathway: a means to induce tolerance. Curr. Opin. Immunol. 6, 797– 807 (1994).

    Article  CAS  Google Scholar 

  17. Celis, E. & Saibara, T. Binding of T cell receptor to major histocompatibility complex class II-peptide complexes at the single-cell level results in the induction of antigen unresponsiveness (anergy). Eur. J. Immunol. 22, 3127–3134 (1992).

    Article  CAS  Google Scholar 

  18. Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H. & Allison, J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 ( 1992).

    Article  ADS  CAS  Google Scholar 

  19. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609– 612 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Pircher, H. et al. T cell tolerance to Mlsa encoded antigens in T cell receptor V beta 8. 1 chain transgenic mice. EMBO J. 8, 719–727 (1989).

    Article  CAS  Google Scholar 

  22. Teh, H. S. et al. Thymic major histocompatibility complex antigens and the alpha beta T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 ( 1988).

    Article  ADS  CAS  Google Scholar 

  23. Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol. 8, 554 –562 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Saunders for scientific editing, and T.W. Mak, J. Sasaki, N. Joza, M. Crackover, E. Griffith, M. Cheng, Q. Liu and P. Liu for comments. K.B. is supported by grants from the Heart and Stroke Foundation of Canada and by Amgen. J.M.P is supported by the Medical Research Council (MRC) and the National Cancer Institute (NCI) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef M. Penninger.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmaier, K., Krawczyk, C., Kozieradzki, I. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000). https://doi.org/10.1038/35003228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003228

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing