Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomeres shorten during ageing of human fibroblasts

Abstract

THE terminus of a DNA helix has been called its Achilles' heel1. Thus to prevent possible incomplete replication2 and instability3,4 of the termini of linear DNA, eukaryotic chromosomes end in characteristic repetitive DNA sequences within specialized structures called telomeres5. In immortal cells, loss of telomeric DNA due to degradation or incomplete replication is apparently balanced by telomere elongation6–10, which may involve de novo synthesis of additional repeats by a novel DNA polymerase called telomerase11–14. Such a polymerase has been recently detected in HeLa cells15. It has been proposed that the finite doubling capacity of normal mammalian cells is due to a loss of telomeric DNA and eventual deletion of essential sequences1,16,17. In yeast, the est1 mutation causes gradual loss of telomeric DNA and eventual cell death mimicking senescence in higher eukaryotic cells17. Here, we show that the amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo. It is not known whether this loss of DNA has a causal role in senescence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Olovnikov, A. M. J. theor. Biol. 41, 181–190 (1973).

    Article  CAS  Google Scholar 

  2. Watson, J. D. Nature new Biol. 239, 197–201 (1972).

    Article  CAS  Google Scholar 

  3. Mueller, H. J. Collecting Net 13, 181–198 (1938).

    Google Scholar 

  4. McClintock, B. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Blackburn, E. H. & Szostak, J. W. A. Rev. Biochem. 53, 163–194 (1984).

    Article  CAS  Google Scholar 

  6. Bernards, A., Michels, P. A. M., Lincke, C. R. & Borst, P. Nature 303, 592–597 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Shampay, J., Szostak, J. W. & Blackburn, E. H. Nature 310, 154–157 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Larson, D. D., Spangler, E. A. & Blackburn, E. H. Cell 50, 477–483 (1987).

    Article  CAS  Google Scholar 

  9. Shampay, J. & Blackburn, E. H. Proc. natn. Acad. Sci. U.S.A. 85, 534–538 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Murray, A. W., Claus, T. E. & Szostak, J. W. Molec. cell. Biol. 8, 4642–4650 (1988).

    Article  CAS  Google Scholar 

  11. Greider, C. W. & Blackburn, E. H. Nature 337, 331–337 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Greider, C. W. & Blackburn, E. H. Cell 43, 405–413 (1985).

    Article  CAS  Google Scholar 

  13. Zahler, A. M. & Prescott, D. M. Nucleic Acids Res. 16, 6953–6972 (1988).

    Article  CAS  Google Scholar 

  14. Shippen-Lentz, D. & Blackburn, E. H. Molec. cell Biol. 9, 2761–2764 (1989).

    Article  CAS  Google Scholar 

  15. Morin, G. B. Cell 59, 521–529 (1989).

    Article  CAS  Google Scholar 

  16. Cooke, H. J. & Smith, B. A. Cold Spring Harb. Symp. quant. Biol. 51, 213–219 (1986).

    Article  CAS  Google Scholar 

  17. Lundblad, V. & Szostak, J. W. Cell 57, 633–643 (1989).

    Article  CAS  Google Scholar 

  18. Hayflick, L. & Moorhead, P. S. Expl Cell Res. 25, 585–621 (1961).

    Article  CAS  Google Scholar 

  19. Stanulis-Praeger, B. M. Mech. Ag. Dev. 38, 1–48 (1987).

    Article  CAS  Google Scholar 

  20. Prashad, N. & Cutler, R. G. Biochim. biophys. Acta 418, 1–23 (1976).

    Article  CAS  Google Scholar 

  21. Allshire, R. C., Dempster, M. & Hastie, N. D. Nucleic Acids Res. 17, 4611–4627 (1989).

    Article  CAS  Google Scholar 

  22. Saksela, E. & Moorhead, P. S. Proc. natn. Acad. Sci. U.S.A. 50, 390–395 (1963).

    Article  ADS  CAS  Google Scholar 

  23. Sherwood, S. W., Rush, D., Ellsworth, J. L. & Schimke, R. T. Proc. natn. Acad. Sci. U.S.A. 85, 9086–9090 (1989).

    Article  ADS  Google Scholar 

  24. Benn, P. A. Am. J. hum. Genet. 28, 465–473 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Prieur, M. et al. Hum. Genet. 79, 147–150 (1988).

    Article  CAS  Google Scholar 

  26. Bender, M. A., Preston, R. J., Leonard, R. C., Pyatt, B. E. & Gooch, P. C. Mutat. Res. 212, 149–154 (1989).

    Article  CAS  Google Scholar 

  27. Hastie, N. D. & Allshire, R. C. Trends Genet. 5, 326–331 (1989).

    Article  CAS  Google Scholar 

  28. Pathak, S., Wang, Z., Dhaliway, M. K. & Sacks, P. C. Cytogenet. Cell Genet. 47, 227–229 (1988).

    Article  CAS  Google Scholar 

  29. Cross, S. H., Allshire, R. C., McKay, S., McGill, N. & Cooke, H. J. Nature 338, 771–774 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Harley, C. B., Shmookler Reis, R. J. & Goldstein, S. J. theor. Biol. 94, 1–12 (1982).

    Article  CAS  Google Scholar 

  31. Harley, C. B. Meth. molec. Biol. 5, 25–32 (1990).

    CAS  Google Scholar 

  32. Morgan, A. R., Lee, J. S., Pulleyblank, D. E., Murray, N. L. & Evans, D. H. Nucleic Acids Res. 7, 547–569 (1979).

    Article  CAS  Google Scholar 

  33. de Lange, T. et al. Molec. cell. Biol. 10, 518–527 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harley, C., Futcher, A. & Greider, C. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990). https://doi.org/10.1038/345458a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345458a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing