Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential role of mouse telomerase in highly proliferative organs

Abstract

We have investigated the role of the enzyme telomerase in highly proliferative organs in successive generations of mice lacking telomerase RNA. Late-generation animals exhibited defective spermatogenesis, with increased programmed cell death (apoptosis) and decreased proliferation in the testis. The proliferative capacity of haematopoietic cells in the bone marrow and spleen was also compromised. These progressively adverse effects coincided with substantial erosion of telomeres (the termini of eukaryotic chromosomes) and fusion and loss of chromosomes. These findings indicate an essential role for telomerase, and hence telomeres, in the maintenance of genomic integrity and in the long-term viability of high-renewal organ systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of lack of telomerase on the mouse reproductive system.
Figure 2: Proliferation and apoptosis in the male germ-cell compartment.
Figure 3: Effects of the lack of telomerase on haematopoietic cells.
Figure 4: Response of lymphocytes to lack of telomerase.

Similar content being viewed by others

References

  1. Greider, C. W. Telomere length regulation. Annu. Rev. Biochem. 65, 337–365 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Muller, H. J. The remaking of chromosomes. Collect. Net 8, 182–195 (1938).

    Google Scholar 

  3. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 ( 1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Greider, C. W. Chromosome first aid. Cell 67, 645– 647 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 ( 1985).

    Article  CAS  PubMed  Google Scholar 

  6. Greider, C. W. & Blackburn, E. H. Atelomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Feng, J.et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Lingner, J.et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Harrington, L.et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 11, 3109–3115 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kilian, A.et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns on different cell types. Hum. Mol. Genet. 6, 2011–2019 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Nakayama, J.et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nature Genet. 18, 65–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Meyerson, M.et al. HEST2, the putative human telomerase catalytic subunit gene, is upregulated in tumor cells and during immortalization. Cell 90, 785–795 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura, T. M.et al . Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955– 959 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Hastie, N. D.et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Bodnar, A. G.et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349– 352 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Counter, C. M.et al . Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 ( 1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl Acad. Sci. USA 92, 4818–4822 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, N. W.et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011– 2015 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Blasco, M. A.et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25– 34 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Singer, M. S. & Gottschling, D. E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 403–409 (1994).

    Article  ADS  Google Scholar 

  22. McEachern, M. J. & Blackburn, E. H. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376, 403–409 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Haber, J. E. & Thorburn, P. C. Healing of broken linear dicentric chromosomes in yeast. Genetics 106, 207– 226 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sandell, L. L. & Zakian, V. A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729–739 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Wright, S. Systems of mating. Genetics 6, 111– 178 (1921).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Drost, J. B. & Lee, W. R. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among Drosophila, mouse, and human. Environ. Mol. Mutagen. 25 (suppl. 26), 48–64 (1995).

    Article  Google Scholar 

  27. Shima, H., Motomu, T., Young, P. & Cunha, G. R. Postnatal growth of mouse seminal vesicle is dependent on 5α-dihydrotestosterone. Endocrinology 127, 3222–3233 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Erslev, A. J. & Lichtman, M. A. in Hematology 4th edn 37–47 (McGraw-Hill, (1993).

    Google Scholar 

  29. Buchkovich, K. J. & Greider, C. W. Telomerase regulation during entry into the cell cycle in normal human T cells. Mol. Biol. Cell 7, 1443–1454 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weng, N.-P., Levine, B. L., June, C. H. & Hodes, R. J. Regulated expression of telomerase activity in human T lymphocyte development and activation. J. Exp. Med. 183, 2471– 2479 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Bodnar, A.. G., Kim, N. W., Effros, R. B. & Chiu, C. P. Mechanism of telomerase induction during T cell activation. Exp. Cell Res. 228, 58–64 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  32. Garagna, S.et al. Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma 103, 685–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Nanda, I., Schneider-Rasp, S., Winking, H. & Schmid, M. Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangement. Chromosome Res. 3, 399–409 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  34. Zijlmans, J. M.et al . Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3repeats. Proc. Natl Acad. Sci. USA 94, 7423–7428 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saltman, D., Morgan, R., Cleary, M. L. & de Lange, T. Telomeric structure in cells with chromosome end associations. Chromosoma 102, 121 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. McEachern, M. J. & Blackburn, E. H. Cap-prevented recombination between terminal telomeric repeat arrays (telomere CAPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev. 10, 1822–1834 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  37. Kipling, D. & Cooke, H. J. Hypervariable ultra-long telomeres in mice. Nature 347, 400– 402 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Watt, S. M. & Visser, J. W. M. Recent advances in the growth and isolation of primitive human haemopoietic progenitor cells. Cell Prolif. 25, 263–297 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Vindelov, L. L., Christensen, I. J. & Nissen, N. L. Adetergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3, 323–327 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Morgenbesser, S. D. et al. P53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371, 72–74 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Cannizzaro, L. A. & Shi, G. Fluorescent in situ hybridization (FISH) for DNA probes in the interphase and metaphase stages of the cell cycle. Methods Mol. Biol. 75, 313–322 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Cannizzaro, M. Zohouri, D. Gebhard, R. Mazzaccaro, B. Furman, K.E.Cedeno-Baier, L. Husted, A. Silverman, N. Squillante, H. Hou and J. Lauridsen for advice and assistance; N. Schreiber-Agus, R. Greenberg, L. Chin, J. Pollard, E. R. Stanley and R. Kucherlapati for critical reading of the manuscript and advice; and E. Herrera and J. M. Caballero for sharing the dermatitis data collected in the National Center of Biotechnology (Madrid) before publication. Work in the lab of R.A.D. was supported by the NIH, AHA Grant-in-Aid and a Liver Center Initiative. R.A.D. is a recipient of the Irma T. Hirschl Career Scientist Award. R.A.D. and C.W.G. are also supported by Cancer Core grants. Work in the lab of C.W.G. was supported by the NIH and by Geron Corporaiton. M.A.B. was supported by the Leukemia Society of America, a grant from the Ministry of Education of Spain, and the Department of Immunology and Oncology (founded by the Spanish research Council and Pharmacia-Upjohn). H.W.L. was supported by an NIH postdoctoral training grant.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HW., Blasco, M., Gottlieb, G. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998). https://doi.org/10.1038/33345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33345

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing