Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing

Abstract

In developing organs, the regulation of cell proliferation and patterning of cell fates is coordinated. How this coordination is achieved, however, is unknown. In the developing Drosophila wing, both cell proliferation and patterning require the secreted morphogen Wingless (Wg) at the dorsoventral compartment boundary (reviewed in ref. 1). Late in wing development, Wg also induces a zone of non-proliferating cells at the dorsoventral boundary. This zone gives rise to sensory bristles of the adult wing margin2,3. Here we investigate how Wg coordinates the cell cycle with patterning by studying the regulation of this growth arrest. We show that Wg, in conjunction with Notch, induces arrest in both the G1 and G2 phases of the cell cycle in separate subdomains of the zone of non-proliferating cells. Wg induces G2 arrest in two subdomains by inducing the proneural genes achaete and scute, which downregulate the mitosis-inducing phosphatase String (Cdc25)4. Notch activity creates a third domain by preventing arrest at G2 in wg-expressing cells, resulting in their arrest in G1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ZNC contains cells arrested in G1 or G2 phase.
Figure 2: Wg regulates stg in the G2-arrested cells.
Figure 3: Ac and Sc repress stg transcription.
Figure 4: Notch activity prevents G2 arrest.
Figure 5: Model of cell-cycle arrests in the ZNC.

Similar content being viewed by others

References

  1. Serrano, N. & O'Farrell, P. H. Limb morphogenesis: connections between patterning and growth. Curr. Biol. 7, 186–195 (1997).

    Article  Google Scholar 

  2. O'Brochta, D. A. & Bryant, P. J. Azone of non-proliferating cells at a lineage restriction boundary in Drosophila. Nature 313, 138–141 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Phillips, R. G. & Whittle, J. R. wingless expression mediates determination of peripheral nervous system elements in late stages of Drosophila wing disc development. Development 118, 427–438 (1993).

    Article  CAS  Google Scholar 

  4. Edgar, B. A. & O'Farrell, P. H. The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 62, 469–480 (1990).

    Article  CAS  Google Scholar 

  5. Blair, S. S. Mechanisms of compartment formation: evidence that non-proliferating cells do not play a critical role in defining the D/V lineage restriction in the developing wing of Drosophila. Development 119, 339–351 (1993).

    Article  CAS  Google Scholar 

  6. Cubas, P., de Celis, J. F., Campuzano, S. & Modolell, J. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Gene Dev. 5, 996–1008 (1991).

    Article  CAS  Google Scholar 

  7. Skeath, J. B. & Carroll, S. B. Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev. 5, 984–995 (1991).

    Article  CAS  Google Scholar 

  8. Hartenstein, V. & Posakony, J. W. Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107, 389–405 (1989).

    Article  CAS  Google Scholar 

  9. Lehner, C. F. & O'Farrell, P. H. The roles of Drosophila cyclins A and B in mitotic control. Cell 61, 535–547 (1990).

    Article  CAS  Google Scholar 

  10. Knoblich, J. A. et al. Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77, 107–120 (1994).

    Article  CAS  Google Scholar 

  11. Duronio, R. J., O'Farrell, P. H., Xie, J. E., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 9, 1445–1455 (1995).

    Article  CAS  Google Scholar 

  12. Nusse, R. Aversatile transcriptional effector of Wingless signaling. Cell 89, 321–323 (1997).

    Article  CAS  Google Scholar 

  13. Romani, S., Campuzano, S., Macagno, E. R. & Modolell, J. Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev. 3, 997–1007 (1989).

    Article  CAS  Google Scholar 

  14. Usui, K. & Kimura, K.-I. Sensory mother cells are selected from among mitotically quiescent clusters of cells in the wing disc of Drosophila. Development 116, 601–610 (1992).

    Article  Google Scholar 

  15. de Celis, J. F., Garcia-Bellido, A. & Bray, S. J. Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122, 359–369 (1996).

    Article  CAS  Google Scholar 

  16. Couso, J. P., Knust, E. & Martinez, A. A. Serrate and Wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr. Biol. 5, 1437–1448 (1995).

    Article  CAS  Google Scholar 

  17. Rulifson, E. J. & Blair, S. S. Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development 121, 2813–2824 (1995).

    Article  CAS  Google Scholar 

  18. Schweisguth, F. Suppressor of Hairless is required for signal reception during lateral inhibition in the Drosophila pupal notum. Development 121, 1875–1884 (1995).

    Article  CAS  Google Scholar 

  19. Neumann, C. J. & Cohen, S. M. Ahierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development 122, 3477–3485 (1996).

    Article  CAS  Google Scholar 

  20. Kopan, R. & Turner, D. L. The Notch pathway: democracy and aristocracy in the selection of cell fate. Curr. Opin. Neurobiol. 6, 594–601 (1996).

    Article  CAS  Google Scholar 

  21. Zimmerman, K., Shih, J., Bars, J., Collazo, A. & Anderson, D. J. Xash-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate. Development 119, 221–232 (1993).

    Article  CAS  Google Scholar 

  22. Campuzano, S. et al. Molecular genetics of the achaete-scute complex of D. melanogaster. Cell 40, 327–338 (1985).

    Article  CAS  Google Scholar 

  23. Bejsovec, A. & Martinez, A. A. Roles of wingless in patterning the larval epidermis of Drosophila. Development 113, 471–485 (1991).

    Article  CAS  Google Scholar 

  24. Baker, N. E. Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J. 6, 1765–1773 (1987).

    Article  CAS  Google Scholar 

  25. Johnston, L. A. & Schubiger, G. Ectopic expression of wingless in imaginal discs interferes with decapentaplegic expression and alters cell determination. Development 122, 3519–3529 (1996).

    Article  CAS  Google Scholar 

  26. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    Article  CAS  Google Scholar 

  27. Gustafson, K. & Boulianne, G. L. Distinct expression patterns detected within individual tissues by the Ga14 enhancer trap technique. Genome 39, 174–182 (1996).

    Article  CAS  Google Scholar 

  28. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  29. Pai, L. M. et al. Drosophila alpha-catenin and E-cadherin bind to distinct regions of Drosophila Armadillo. J. Cell Biol. 271, 32411–32420 (1996).

    CAS  Google Scholar 

  30. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Neufeld, A. Bejsovec, M. Peifer, J-P. Vincent, C. Doe, S. Blair, S. Carroll, R. Nusse, S. Parkhurst, H. Richardson, C. Lehner, G. Boulianne and E. Giniger for gifts of flies or antibodies, C. Queva and K. Sharma for communicating unpublished results, and R. Kopan, M. Schubiger, S. Blair, J. Overbaugh, J. Priess, M. Emerman, J. Roberts and members of the Edgar lab for discussions and comments on the manuscript. L.A.J. is supported by a grant from the NIH. B.A.E. receives support from the NIH, and is a Rita Allen and a Lucille P. Markey Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Johnston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, L., Edgar, B. Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature 394, 82–84 (1998). https://doi.org/10.1038/27925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27925

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing