Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The murine kappa light chain shift

Abstract

THE immunoglobulins of mice and other animals consist of several distinct heavy chains associated with either of two light chains (κ or λ). Adult animals of different species produce immunoglobulins which demonstrate widely divergent ratios of κ to λ light chains. In mice, most of B-cell surface immunoglobulins possess κ light chains1. However, as all previous work on the ratio of κ/λ immunoglobulins was based on experiments with adult animals, the possibility that immature populations of B cells may demonstrate a more evenly balanced ratio of κ to λ positive cells was investigated. In this study, populations of cells known to contain immature B lymphocytes were examined by indirect immunofluorescence for the presence of κ and λ positive cells. The results demonstrate that fetal liver, bone marrow and spleens from young mice contain B cell populations with a κ/λ ratio approaching unity. In the spleen, the κ/λ ratio increased as a function of age with the most dramatic shift occurring between 4 and 6 weeks of age. A similar, but less dramatic increase in the κ/λ ratio occurs in the bone marrow. Based on these data, we propose that the final predominance of κ-bearing cells is based on a two-stage process. Initially, there is an equal probability of κ or lambda; light chain expression at the cell surface. However, the κ-bearing cells, which possess a more abundant repertoire of Vκ genes, eventually predominate as a result of antigen driven clonal expansion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hood, L., Gray, W. R., Sanders, B. G. & Dreyer, W. J. Cold Spring Harb. Symp. quant. Biol. 32, 133 (1967).

    Article  CAS  Google Scholar 

  2. Bevan, M. J., Parkhouse, R. M. E., Williamson, A. R. & Askonas, B. Prog. Biophys. molec. Biol. 25, 209 (1972).

    Article  Google Scholar 

  3. Koshland, M. E. Cold Spring Harb. Symp. quant. Biol. 32, 119 (1967).

    Article  CAS  Google Scholar 

  4. Milstein, C. & Pink, J. R. L. Prog. Biophys. molec. Biol. 21, 209 (1970).

    Article  CAS  Google Scholar 

  5. Putnam, F. Science 163, 633 (1969).

    Article  ADS  CAS  Google Scholar 

  6. Todd, C. & Inmann, J. Immunochem. 14, 407 (1967).

    Article  Google Scholar 

  7. Wang, A. C., Wilson, S. K., Hopper, J. E., Fudenberg, H. H. & Nisonoff, A. Proc. natn. Acad. Sci. U.S.A. 66, 337 (1970).

    Article  ADS  CAS  Google Scholar 

  8. Feinstein, A. Nature 199, 1197 (1963).

    Article  ADS  CAS  Google Scholar 

  9. Kindt, T. J. & Todd, C. W. J. exp. Med. 130, 859 (1969).

    Article  CAS  Google Scholar 

  10. Herzenberg, L. A. Cold Spring Harb. Symp. quant. Biol. 29, 455 (1964).

    Article  CAS  Google Scholar 

  11. Lieberman, R. & Potter, M. J. molec. Biol. 18, 516 (1966).

    Article  CAS  Google Scholar 

  12. Potter, M. & Lieberman, R. Cold Spring Harb. Symp. quant. Biol. 32, 187 (1967).

    Article  CAS  Google Scholar 

  13. Potter, M. & Lieberman, R. Adv. Immun. 7, 91 (1967).

    Article  CAS  Google Scholar 

  14. Kohler, H., Shimizo, H. A., Paul, C., Moore, V. & Putman, F. W. Nature 227, 1318 (1970).

    Article  ADS  CAS  Google Scholar 

  15. Hood, L. & Ein, D. Nature 220, 764 (1968).

    Article  ADS  CAS  Google Scholar 

  16. Potter, M. Physiol. Rev. 52, 631 (1972).

    Article  CAS  Google Scholar 

  17. McIntire, K. R. & Rouse, A. M. Fedn Proc. 29, 704 (1970).

    Google Scholar 

  18. Barandun, S., Skvaril, F. & Morell, A. Clin. Immun. 3, 57 (1977).

    Google Scholar 

  19. Spear, P. G., Wang, A., Rutishauser, U. & Edelman, G. J. exp. Med. 138, 557 (1973).

    Article  CAS  Google Scholar 

  20. Lynes, M. A., Lanier, L. L., Babcock, G. F., Wettstein, P. J. & Haughton, G. J. Immun. (in the press).

  21. Lanier, L. L., Lynes, M., Haughton, G. & Wettstein, P. J. Nature 271, 554 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Pernis, B., Forni, L. & Amante, A. L. J. exp. Med. 132, 1001 (1970).

    Article  CAS  Google Scholar 

  23. Babcock, G. F., Lanier, L. L., Lynes, M. A. & Haughton, G. J. Immuno. Meth. (in the press).

  24. Snedecor, G. W. & Cochran, W. G. Statistical Methods 6th edn, ch. 10 (Iowa State Univ. Press, 1967).

    MATH  Google Scholar 

  25. Jonckhecre, A. R. Biometrika 41, 133 (1954).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HAUGHTON, G., LANIER, L. & BABCOCK, G. The murine kappa light chain shift. Nature 275, 154–157 (1978). https://doi.org/10.1038/275154a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing