Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myosin-V is a processive actin-based motor

Abstract

Class-V myosins, one of 15 known classes of actin-based molecular motors, have been implicated in several forms of organelle transport1,2,3,4,5 perhaps working with microtubule-based motors such as kinesin2,3,4,6. Such movements may require a motor with mechanochemical properties distinct from those of myosin-II, which operates in large ensembles to drive high-speed motility as in muscle contraction7. Based on its function and biochemistry, it has been suggested that myosin-V may be a processive motor7,8 like kinesin9,10. Processivity means that the motor undergoes multiple catalytic cycles and coupled mechanical advances for each diffusional encounter with its track. This allows single motors to support movement of an organelle along its track. Here we provide direct evidence that myosin-V is indeed a processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin-filament gliding.
Figure 2: Processive stepping by myosin-V observed using the dual-beam optical trap.
Figure 3: Step measurements.

Similar content being viewed by others

References

  1. Wu, X., Bowers, B., Rao, K., Wei, Q. & Hammer, J. A. Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin-V function in vivo. J. Cell Biol. 143, 1899–1918 (1998).

    Article  CAS  Google Scholar 

  2. Tabb, J. S., Molyneaux, B. J., Cohen, D. L., Kuznetsov, S. A. & Langford, G. M. Transport of ER vesicles on actin filaments in neurons by myosin-V. J. Cell Sci. 111, 3221–3234 (1998).

    CAS  PubMed  Google Scholar 

  3. Rogers, S. L. & Gelfand, V. I. Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr. Biol. 8, 161–164 (1998).

    Article  CAS  Google Scholar 

  4. Mermall, V., Post, P. L. & Mooseker, M. S. Unconventional myosins in cell movement, membrane traffic and signal transduction. Science 279, 527–533 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Evans, L. L., Lee, A. J., Bridgman, P. C. & Mooseker, M. S. Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J. Cell Sci. 111, 2055–2066 (1998).

    CAS  PubMed  Google Scholar 

  6. Huang, J. D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Nascimento, A. A. C., Cheney, R. E., Tauhata, S. B. F., Larson, R. E. & Mooseker, M. S. Enzymatic characterization and functional domain mapping of brain myosin-V. J. Biol. Chem. 271, 17561–17569 (1996).

    Article  CAS  Google Scholar 

  9. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Block, S. M., Goldstein, L. S. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Cheney, R. E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).

    Article  CAS  Google Scholar 

  12. Reck-Peterson, S. L., Novick, P. J. & Mooseker, M. S. The tail of a yeast class V myosin, myo2p, functions as a localization domain. Mol. Biol. Cell 10, 1001–1017 (1999).

    Article  CAS  Google Scholar 

  13. Hancock, W. O. & Howard, J. Processivity of the motor protein kinesin requires two heads. J. Cell Biol. 140, 1395–1405 (1998).

    Article  CAS  Google Scholar 

  14. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Mehta, A. D., Finer, J. T. & Spudich, J. A. Use of optical traps in single-molecule study of nonprocessive biological motors. Methods Enzymol. 298, 436–459 (1998).

    Article  CAS  Google Scholar 

  16. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  Google Scholar 

  17. Meyhofer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Coppin, C. M., Pierce, D. W., Hsu, L. & Vale, R. D. The load dependence of kinesin's mechanical cycle. Proc. Natl Acad. Sci. USA 94, 8539–8544 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997).

    Article  CAS  Google Scholar 

  20. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Howard, J. & Spudich, J. A. Is the lever arm of myosin a molecular elastic element? Proc. Natl Acad. Sci. USA 93, 4462–4464 (1996).

    CAS  PubMed  Google Scholar 

  24. Mehta, A. D. & Spudich, J. A. Single myosin molecule mechanics. Adv. Struct. Biol. 5, 229–270 (1999).

    Article  Google Scholar 

  25. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  CAS  Google Scholar 

  28. Cheney, R. E. Purification and assay of myosin-V. Methods Enzymol. 298, 3–18 (1998).

    Article  CAS  Google Scholar 

  29. Ishijima, A. et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 (1998).

    Article  CAS  Google Scholar 

  30. Veigel, C. et al. The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Rodriguez, C. Pennisi and C. Pearson for assistance in the purification of myosin-V; T. Sulchek for assistance in AFM imaging; J. Sellers for helpful discussions; and L. Evans, V. Mermall, H. Warrick, and M. Heidecker for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, A., Rock, R., Rief, M. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999). https://doi.org/10.1038/23072

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23072

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing