Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mPer2 gene encodes a functional component of the mammalian circadian clock

Abstract

Circadian rhythms are driven by endogenous biological clocks that regulate many biochemical, physiological and behavioural processes in a wide range of life forms1. In mammals, there is a master circadian clock in the suprachiasmatic nucleus of the anterior hypothalamus. Three putative mammalian homologues (mPer1, mPer2 and mPer3) of the Drosophila circadian clock gene period (per) have been identified2,3,4,5,6,7,8. The mPer genes share a conserved PAS domain (a dimerization domain found in Per, Arnt and Sim) and show a circadian expression pattern in the suprachiasmatic nucleus. To assess the in vivo function of mPer2, we generated and characterized a deletion mutation in the PAS domain of the mouse mPer2 gene. Here we show that mice homozygous for this mutation display a shorter circadian period followed by a loss of circadian rhythmicity in constant darkness. The mutation also diminishes the oscillating expression of both mPer1 and mPer2 in the suprachiasmatic nucleus, indicating that mPer2 may regulate mPer1 in vivo. These data provide evidence that an mPer gene functions in the circadian clock, and define mPer2 as a component of the mammalian circadian oscillator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of mPer2 Brdm1 mutant mice.
Figure 2: Representative locomotor activity records of F2 wild-type and homozygous mPer2 Brdm1 mutant mice.
Figure 3: Fourier analysis of periodicity of F2 wild-type and homozygous mPer2 Brdm1 mutants.
Figure 4: Expression analysis of F2 wild-type and homozygous mPer2 Brdm1 mutant mice in LD 12:12.

Similar content being viewed by others

References

  1. Pittendrigh, C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55, 16–54 (1993).

    Article  CAS  Google Scholar 

  2. Sun, Z. S. et al. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003–1011 (1997).

    Article  CAS  Google Scholar 

  3. Tei, H. et al. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512–516 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Albrecht, U., Sun, Z. S., Eichele, G. & Lee, C. C. Adifferential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055–1064 (1997).

    Article  CAS  Google Scholar 

  5. Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. J & Reppert, S. M. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19, 1261–1269 (1997).

    Article  CAS  Google Scholar 

  6. Takumi, T. et al. Anew mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells 3, 167–176 (1998).

    Article  CAS  Google Scholar 

  7. Zylka, M. J., Shearman, L. P., Weaver, D. R. & Reppert, S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110 (1998).

    Article  CAS  Google Scholar 

  8. Takumi, T. et al. Alight-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 17, 4753–4759 (1998).

    Article  CAS  Google Scholar 

  9. Huang, Z. J., Edery, I. & Rosbash, M. PAS is a dimerization domain common to Drosophila Period and several transcription factors. Nature 364, 259–262 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Crosthwaite, S. K., Dunlap, J. C. & Loros, J. J. Neurospora wc-1 and wc-2 : transcription, photoresponses, and the origins of circadian rhythmicity. Science 276, 763–769 (1997).

    Article  CAS  Google Scholar 

  11. King, D. P. et al. Positional cloning of the mouse circadian Clock gene. Cell 89, 641–653 (1997).

    Article  CAS  Google Scholar 

  12. Rutila, J. E. et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805–814 (1998).

    Article  CAS  Google Scholar 

  13. Allada, R., White, N. E., So, W. V., Hall, J. C. & Rosbash, M. Amutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804 (1998).

    Article  CAS  Google Scholar 

  14. Ponting, C. P. & Aravind, L. PAS: a multifunctional domain family comes to light. Curr. Biol. 7, R674–R677 (1997).

    Article  CAS  Google Scholar 

  15. Bracewell, R. N. The Hartley Transform (Oxford Univ. Press, New York, (1986).

    MATH  Google Scholar 

  16. Aschoff, J. in Handbook of Behavioral Neurobiology 4: Biological Rhythms (ed. Aschoff, J.) 3–10 (Plenum, New York, (1981).

    Google Scholar 

  17. Ibuka, N., Inouye, S. I. & Kawamura, H. Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res. 122, 33–47 (1977).

    Article  CAS  Google Scholar 

  18. Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Dowse, H. B. & Ringo, J. M. Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J. Biol. Rhythms 2, 65–76 (1987).

    Article  CAS  Google Scholar 

  20. Hamblen-Coyle, M. J., Wheeler, D. A., Rutila, J. E., Rosbash, M. & Hall, J. C. Behavior of period-altered rhythm mutants of Drosophila in light:dark cycles. J. Insect Behav. 5, 417–446 (1992).

    Article  Google Scholar 

  21. Ralph, M. R. & Menaker, M. Amutation of the circadian system in golden hamsters. Science 241, 1225–1227 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Hardin, P. E., Hall, J. C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Dunlap, J. C. Genetics and molecular analysis of circadian rhythms. Annu. Rev. Genet. 30, 579–601 (1996).

    Article  CAS  Google Scholar 

  24. Balsalobre, A., Damiola, F. & Schibler, U. Aserum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  Google Scholar 

  25. Sangoram, A. M. et al. Mammalian circadian autoregulatory loop: A Timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21, 1101–1113 (1998).

    Article  CAS  Google Scholar 

  26. Bae, K., Lee, C., Sidote, D., Chuang, K. Y. & Edery, I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM fucntion as positive regulators. Mol. Cell. Biol. 18, 6142–6151 (1998).

    Article  CAS  Google Scholar 

  27. Matzuk, M. M., Finegold, M. J., Su, J. G., Hsueh, A. J. & Bradley, A. Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360, 313–319 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Ramirez-Solis, R., Davis, A. C. & Bradley, A. Gene targeting in embryonic stem cells. Methods Enzymol. 225, 855–878 (1993).

    Article  CAS  Google Scholar 

  29. Sokolove, P. G. & Bushell, W. N. The chi square periodogram: its utility for analysis of circadian rhythms. J. Theor. Biol. 72, 131–160 (1978).

    Article  CAS  Google Scholar 

  30. Albrecht, U., Eichele, G., Helms, J. A. & Lu, H. in Molecular and Cellular Methods in Developmental Toxicology (ed. Daston, G. P.) 23–48 (CRC Press, Boca Raton, FL, (1997).

    Google Scholar 

Download references

Acknowledgements

We thank S. Vaishnav, L. Qiu, Y.-C. Cheah, E. Sheppeard and S. Rivera for technical assistance; P. Hastings for comments on the manuscript; J. W. Patrick for providing space and facilities for circadian phenotype analysis; and J. Takahashi, Y. Zhao and M. Bucan for helpful discussions. This work was supported by grants from NINDS and NIDA to J. W. Patrick, from the Max-Planck Society to G. E., from NIH and the Department of Defense to C.C.L., and from NIH and the Howard Hughes Medical Institute to A.B. A.B. is an investigator with HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Chi Lee.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, B., Larkin, D., Albrecht, U. et al. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173 (1999). https://doi.org/10.1038/22118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing