Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mammalian Suppressor-of-Fused modulates nuclear–cytoplasmic shuttling of GLI-1

Abstract

Sonic hedgehog, Patched and Gli are components of a mammalian signalling pathway that has been conserved during evolution and which has a central role in the control of pattern formation and cellular proliferation during development. Here we identify the human Suppressor-of-Fused (SUFUH) complementary DNA and show that the gene product interacts physically with the transcriptional effector GLI-1, can sequester GLI-1 in the cytoplasm, but can also interact with GLI-1 on DNA. Functionally, SUFUH inhibits transcriptional activation by GLI-1, as well as osteogenic differentiation in response to signalling from Sonic hedgehog. Localization of GLI-1 is influenced by the presence of a nuclear-export signal, and GLI-1 becomes constitutively nuclear when this signal is mutated or nuclear export is inhibited. These results show that SUFUH is a conserved negative regulator of GLI-1 signalling that may affect nuclear–cytoplasmic shuttling of GLI-1 or the activity of GLI-1 in the nucleus and thereby modulate cellular responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The predicted amino-acid sequence encoded by the SUFUH gene and its expression in adult human tissues and mouse embryos.
Figure 2: SUFUH and PTCH1 are both highly expressed in osteoblasts in the perichondrium during human embryonic bone formation.
Figure 3: SUFUH inhibits transcriptional and biological activity of GLI-1.
Figure 4: SUFUH and GLI-1 interact physically.
Figure 5: SUFUH but not SUFUHΔ retains nuclear GLI-1 variants in the cytoplasm.
Figure 6: GLI-1 accumulates in the nucleus when nuclear export is inhibited.
Figure 7: SUFUH can form a complex with constitutively nuclear GLI-1 variants bound to DNA.
Figure 8: Model for the role of SUFUH in the nuclear–cytoplasmic shuttling of GLI1.

Similar content being viewed by others

References

  1. Roessler, E. et al. Mutations in the C-terminal domain of Sonic Hedgehog cause holoprosencephaly. Hum. Mol. Genet. 6, 1847–1853 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, R. L. et al. Human homolog of patched, a candidate gene for basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Vortkamp, A., Gessler, M. & Grzeschik, K.-H. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Ruiz i Altaba, A. Catching a gli-mpse of hedgehog. Cell 90, 193–196 (1997).

    Article  PubMed  Google Scholar 

  6. Monnier, V., Dussillol, F., Alves, G., Lamour-Isnard, C. & Plessis, A. Suppressor of fused links Fused and Cubitus interruptus on the hedgehog signalling pathway. Curr. Biol. 8, 583–586 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Methot, N. & Basler, K. Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell 96, 819–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Ohlmeyer, J. & Kalderon, D. Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature 396, 749–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Shin, S. H., Kogerman, P., Lindström, E., Toftgård, R. & Biesecker, L. G. GLI3 mutations in human disorders mimic Drosophila Cubitus interruptus protein functions and localization. Proc. Natl Acad. Sci. USA 96, 2880–2884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kinzler, K. W. & Vogelstein, B. The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol. Cell. Biol. 10, 634–642 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389, 876–881 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Ruiz i Altaba, A. Gli proteins encode context-dependent positive and negative functions: implications for development and disease. Development 126, 3205–3216 (1999).

    PubMed  Google Scholar 

  13. Dai, P., Akimaru, H., Tanaka, Y., Maekawa, T., Nakafuku, M. & Ishii, S. Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J. Biol. Chem. 274, 8143–8152 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Pham, A. et al. The Suppressor of fused gene encodes a novel PEST protein involved in Drosophila segment polarity establishment. Genetics 140, 587–598 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vortkamp, A. et al. Regulation of cartilage differentiation by Indian Hedgehog and PTCH-related protein. Science 273, 613–622 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Vortkamp, A. et al. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech. Dev. 71, 65–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Hynes, M. et al. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19, 15–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Kinzler, K. W., Ruppert, J. M., Bigner, S. H. & Vogelstein, B. The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332, 371–374 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura, T. et al. Induction of osteogenic differentiation by hedgehog proteins. Biochem. Biophys. Res. Commun. 237, 465–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Murone, M., Rosenthal, A. & de Sauvage, F. J. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9, 76–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Bogerd, H., Echarri, A., Ross, T. M. & Cullen, B. R. Inhibition of human immunodeficiency virus Rev and human T-cell leukemia virus Rex function, but not Mason-Pfizer monkey virus constitutive transport element activity, by a mutant human nucleoporin targeted to Crm1. J. Virol. 72, 8627–8635 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Ingham, P. W. Transducing hedgehog: the story so far. EMBO J. 17, 3505–3511 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamada, F. et al. Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. Science 283, 1739–1742 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Ruppert, J., Vogelstein, B. & Kinzler, K. W. The zinc finger protein GLI transforms primary cells in cooperation with adenovirus E1A. Mol. Cell. Biol. 11, 1724–1728 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaphiropoulos, P. G. & Toftgard, R. cDNA cloning of a novel WD repeat protein mapping to the 9q22.3 chromosomal region. DNA Cell Biol. 15, 1049–1056 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Wilkinson, D. G. In Situ Hybridization: A Practical Approach (IRL, Oxford, 1992).

    Google Scholar 

  29. Undén, A. B., Zaphiropoulos, P. G., Bruce, K., Toftgård, R. & Ståhle-Bäckdahl, M. Human patched (PTCH) mRNA is overexpressed consistently in tumor cells of both familial and sporadic basal cell carcinoma. Cancer Res. 57, 2336–2340 (1997).

    PubMed  Google Scholar 

  30. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5, 3610–3616 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pati, U. K. Novel vectors for expression of cDNA encoding epitope-tagged proteins in mammalian cells. Gene 114, 285–288 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Almlöf, T., Gustafsson, J.-Å . & Wright, A. P. H. Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor. Mol. Cell. Biol. 17, 934–945 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ausubel, F. M. et al. Current Protocols in Molecular Biology (John Wiley, New York, 1987).

  34. Pavletich, N. P. & Pabo, C. O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261, 1701–1707 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B.Vogelstein, K. W. Kinzler, A. McMahon, T. Almlöf and A. Wright for constructs, and B. Wolff for the donation of leptomycin B. This study was supported by grants from the Swedish Cancer Fund (to R.T. and P.G.Z.), the Swedish Children Cancer Fund and the Swedish National Radiation Protection Board (to R.T.) and the Welander-Finsen Foundation, the Cancer Society and Svenska Läkarsällskapet (to A.B.U.). P.K. is a recipient of guest researcher fellowships from the Swedish Institute and Karolinska Institute, T.G. of a postdoctoral TMR fellowship, and D.K. of a postdoctoral fellowship from the Wennergren Foundation.

Correspondence and requests for materials should be addressed to R.T. The SUFUH cDNA sequence has been deposited at GenBank under accession number AF175770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Toftgård.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogerman, P., Grimm, T., Kogerman, L. et al. Mammalian Suppressor-of-Fused modulates nuclear–cytoplasmic shuttling of GLI-1. Nat Cell Biol 1, 312–319 (1999). https://doi.org/10.1038/13031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing