Skip to main content
Log in

Amyloid Formation by Mutant Huntingtin: Threshold, Progressivity and Recruitment of Normal Polyglutamine Proteins

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat encoding a tract of consecutive glutamines near the amino terminus of huntingtin, a large protein of unknown function. It has been proposed that the expanded polyglutamine stretch confers a new property on huntingtin and thereby causes cell and region-specific neurodegeneration. Genotype-phenotype correlations predict that this novel property appears above a threshold length (∼38 glutamines), becomes progressively more evident with increasing polyglutamine length, is completely dominant over normal huntingtin and is not appreciably worsened by a double genetic dose in HD homozygotes. Recently, an amino terminal fragment of mutant huntingtin has been found to form self-initiated fibrillar aggregates in vitro. We have tested the capacity for aggregation to assess whether this property matches the criteria expected for a fundamental role in HD pathogenesis. We find that that in vitro aggregation displays a threshold and progressivity for polyglutamine length remarkably similar to the HD disease process. Moreover, the mutant huntingtin amino terminus is capable of recruiting into aggregates normal glutamine tract proteins, such as the amino terminal segments of both normal huntingtin and of TATA-binding protein (TBP). Our examination of in vivo aggregates from HD post-mortem brains indicates that they contain an amino terminal segment of huntingtin of between 179 and 595 residues. They also contain non-huntingtin protein, as evidenced by immunostaining for TBP. Interestingly, like the in vitro aggregates, aggregates from HD brain display Congo red staining with green birefringence characteristic of amyloid. Our data support the view that the expanded polyglutamine segment confers on huntingtin a new property that plays a determining role in HD pathogenesis and could be a target for treatment. Moreover, the new property might have its toxic consequences by interaction with one or more normal polyglutamine-containing proteins essential for the survival of target neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  1. Gusella, J.F., Persichetti, F., and MacDonald, M.E. (1997). The genetic defect causing Huntington's disease: repeated in other contexts? Mol. Med. 3:238–246.

    PubMed  Google Scholar 

  2. Holmberg, M., Duyckaerts, C., Durr, A., Cancel, G., Gourfinkel-An, I., Damier, P., Faucheux, B., Trottier, Y., Hirsch, E.C., Agid, Y., and Brice, A. (1998). Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum. Mol. Genet. 7:913–918.

    PubMed  Google Scholar 

  3. Ross, C.A. (1997). Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19:1147–1150.

    PubMed  Google Scholar 

  4. Huntington's Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–983.

    Google Scholar 

  5. Duyao, M.P., Auerbach, A.B., Ryan, A., Persichetti, F., Barnes, G.T., McNeil, S.M., Ge, P., Vonsattel, J.P., Gusella, J.F., Joyner, A.L., and MacDonald, ME. (1995). Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269:407–410.

    PubMed  Google Scholar 

  6. Zeitlin, S., Liu, J.P., Chapman, D.L., Papaioannou, V.E., and Efstratiadis, A. (1995). Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat. Genet. 11:155–163.

    PubMed  Google Scholar 

  7. Nasir, J., Floresco, S.B., JR, O.K., Diewert, V.M., Richman, J.M., Zeisler, J., Borowski, A., Marth, J.D., Phillips, A.G., and Hayden, M.R. (1995). Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81:811–823.

    Article  PubMed  Google Scholar 

  8. White, J.K., Auerbach, W., Duyao, M.P., Vonsattel, J.P., Gusella, J.F., Joyner, A.L., and MacDonald, M.E. (1997). Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat. Genet. 17:404–410.

    PubMed  Google Scholar 

  9. Vonsattel, J.P., and DiFiglia, M. (1998). Huntington disease. J. Neuropathol. Exp. Neurol. 57:369–384.

    PubMed  Google Scholar 

  10. McNeil, S.M., Novelletto, A., Srinidhi, J., Barnes, G., Kornbluth, I., Altherr, M.R., Wasmuth, J.J., Gusella, J.F., MacDonald, M.E., and Myers, R.H. (1997). Reduced penetrance of the Huntington's disease mutation. Hum. Mol. Genet. 6:775–779.

    PubMed  Google Scholar 

  11. Rubinsztein, D.C., Leggo, J., Coles, R., Almqvist, E., Biancalana, V., Cassiman, J.J., Chotai, K., Connarty, M., Crauford, D., Curtis, A., Curtis, D., Davidson, M.J., Differ, A.M., Dode, C., Dodge, A., Frontali, M., Ranen, N.G., Stine, O.C., Sherr, M., Abbott, M.H., Franz, M.L., Graham, C.A., Harper, P.S., Hedreen, J.C., Jackson, A., Kaplan, J.C., Losekoot, M., MacMillan, J.C., Morrison, P., Trottier, Y., Novelletto, A., Simpson, S.A., Theilmann, J., Whittaker, J.L., Folstein, S.E., Ross, C.A., and Hayden, M.R. (1996). Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. Am. J. Hum. Genet. 59:16–22.

    PubMed  Google Scholar 

  12. MacDonald, M.E., Barnes, G., Srinidhi, J., Duyao, M.P., Ambrose, C.M., Myers, R.H., Gray, J., Conneally, P.M., Young, A., Penney, J., Shoulson, I., Hollingsworth, Z., Koroshetz, W., Bird, E., Vonsattel, J.P., Bonilla, E., Moskowitz, C., Penchaszadeh, G., Brzustowicz, L., Alvir, J., Bickhem Conde, J., Cha, J-H., Dure, L., Gomez, F., Ramos-Arroyo, M., Sanchez-Ramos, J., Snodgrass, S.R., de Young, M., Waxler, N.S., MacFarlane, H., Anderson, M.A., Jenkins, B., and Gusella, J.F. (1993). Gametic but not somatic instability of CAG repeat length in Huntington's disease. J. Med. Genet. 30:982–986.

    PubMed  Google Scholar 

  13. Cummings, C.J., Mancini, M.A., Antalffy, B., DeFranco, D.B., Orr, H.T., and Zoghbi, H.Y. (1998). Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19:148–154.

    PubMed  Google Scholar 

  14. Davies, S.W., Turmaine, M., Cozens, B.A., DiFiglia, M., Sharp, A.H., Ross, C.A., Scherzinger, E., Wanker, E.E., Mangiarini, L., and Bates, G.P. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548.

    PubMed  Google Scholar 

  15. DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P., and Aronin, N. (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993.

    PubMed  Google Scholar 

  16. Merry, D.E., Kobayashi, Y., Bailey, C.K., Taye, A.A., and Fischbeck, K.H. (1998). Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 7:693–701.

    PubMed  Google Scholar 

  17. Ordway, J.M., Tallaksen-Greene, S., Gutekunst, C.A., Bernstein, E.M., Cearley, J.A., Wiener, H.W., Dure, L.S.T., Lindsey, R., Hersch, S.M., Jope, R.S., Albin, R.L., and Detloff, P.J. (1997). Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 91:753–763.

    PubMed  Google Scholar 

  18. Paulson, H.L., Perez, M.K., Trottier, Y., Trojanowski, J.Q., Subramony, S.H., Das, S.S., Vig, P., Mandel, J.L., Fischbeck, K.H., and Pittman, R.N. (1997). Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344.

    Article  PubMed  Google Scholar 

  19. Perutz, M.F., Johnson, T., Suzuki, M., and Finch, J.T. (1994). Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. U.S.A. 91:5355–5358.

    PubMed  Google Scholar 

  20. Green, H. (1993). Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism. Cell 74:955–956.

    Article  PubMed  Google Scholar 

  21. Cooper, A.J.L., Sheu, K.R., Burke, J.R., Onodera, O., Strittmatter, W.J., Roses, A.D., and Blass, J.P. (1997). Transglutaminase-catalyzed inactivation of glyceraldehyde 3-phosphate dehydrogenase and alpha-ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length. Proc. Natl. Acad. Sci. U.S.A. 94:12604–12609.

    PubMed  Google Scholar 

  22. Cooper, A.J., Sheu, K.F., Burke, J.R., Onodera, O., Strittmatter, W.J., Roses, A.D. and Blass, J.P. (1997). Polyglutamine domains are substrates of tissue transglutaminase: does transglutaminase play a role in expanded CAG/poly-Q neurodegenerative diseases? J. Neurochem. 69:431–434.

    PubMed  Google Scholar 

  23. Gentile, V., Sepe, C., Calvani, M., Melone, M.A., Cotrufo, R., Cooper, A.J., Blass, J.P., and Peluso, G. (1998). Tissue transglutaminase-catalyzed formation of high-molecular-weight aggregates in vitro is favored with long polyglutamine domains: a possible mechanism contributing to CAG-triplet diseases. Arch. Biochem. Biophys. 352:314–321.

    PubMed  Google Scholar 

  24. Kahlem, P., Terre, C., Green, H., and Djian, P. (1996). Peptides containing glutamine repeats as substrates for transglutaminase-catalyzed cross-linking: relevance to diseases of the nervous system. Proc. Natl. Acad. Sci. U.S.A. 93:14580–14585.

    PubMed  Google Scholar 

  25. Kahlem, P., Green, H., and Djian, P. (1998). Transglutaminase action imitates Huntington's disease: selective polymerization of Huntingtin containing expanded polyglutamine. Mol. Cell 1:595–601.

    PubMed  Google Scholar 

  26. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H., and Wanker, E.E. (1997). Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558.

    PubMed  Google Scholar 

  27. Huang, C.C., and Herr, W. (1996). Differential control of transcription by homologous homeodomain coregulators. Mol. Cell. Biol. 16:2967–2976.

    PubMed  Google Scholar 

  28. Mittal, V., and Hernandez, N. (1997). Role for the amino-terminal region of human TBP in U6 snRNA transcription. Science 275:1136–1140.

    PubMed  Google Scholar 

  29. Schende, P.F. (1992). Protein expression. In: Current Protocols in Molecular Biology, Eds: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (New York: John Wiley and Sons).

    Google Scholar 

  30. Lobo, S., Ruppert, S.M., McCulloch, V., Meyer, M., Bautista, C., Falkowski, M., Stunnenberg, H.G., and Hernandez, N. (1996). Monoclonal antibodiesdirected against the amino-terminal domain of human TBP cross-react with TBP from other species. Hybridoma 15:55–68.

    PubMed  Google Scholar 

  31. Aronin, N., Chase, K., Sagar, S.M., Sharp, F.R., and DiFiglia, M. (1991). N-methyl-D-aspartate receptor activation in the neostriatum increases c-fos and fos-related antigens selectively in medium-sized neurons. Neuroscience 44:409–420.

    PubMed  Google Scholar 

  32. Turnell, W.G., and Finch, J.T. (1992). Binding of the dye congo red to the amyloid protein pig insulin reveals a novel homology amongst amyloid-forming peptide sequences. J. Mol. Biol. 227:1205–1223.

    PubMed  Google Scholar 

  33. Gusella, J.F., McNeil, S., Persichetti, F., Srinidhi, J., Novelletto, A., Bird, E., Faber, P., Vonsattel, J.P., Myers, R.H., and MacDonald, M.E. (1996). Huntington's Disease. Cold Spring Harbor Symposia on Quantitative Biology LXI:615–625.

    Google Scholar 

  34. Myers, R.H., Leavitt, J., Farrer, L.A., Jagadeesh, J., McFarlane, H., Mastromauro, C.A., Mark, R.J., and Gusella, J.F. (1989). Homozygote for Huntington disease. Am. J. Hum. Genet. 45:615–618.

    PubMed  Google Scholar 

  35. Wexler, N.S., Young, A.B., Tanzi, R.E., Travers, H., Starosta-Rubinstein, S., Penney, J.B., Snodgrass, S.R., Shoulson, I., Gomez, F., Ramos Arroyo, M.A., and et al. (1987). Homozygotes for Huntington's disease. Nature 326:194–197.

    PubMed  Google Scholar 

  36. Trottier, Y., Lutz, Y., Stevanin, G., Imbert, G., Devys, D., Cancel, G., Saudou, F., Weber, C., David, G., Tora, L., Agid, Y., Hirsch, E.C., and Mandel, J-L. (1995). Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378:403–406.

    PubMed  Google Scholar 

  37. Persichetti, F., Ambrose, C.M., Ge, P., McNeil, S.M., Srinidhi, J., Anderson, M.A., Jenkins, B., Barnes, G.T., Duyao, M.P., Kanaley, L., Waxler, N.S., Myers, R.H., Bird, E.D., Vonsattel, J.P., MacDonald, M.E., and Gusella, J.F. (1995). Normal and expanded Huntington's disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Mol. Med. 1:374–383.

    PubMed  Google Scholar 

  38. Persichetti, F., Carlee, L., Faber, P.W., McNeil, S.M., Ambrose, C.M., Srinidhi, J., Anderson, M., Barnes, G.T., Gusella, J.F., and MacDonald, M.E. (1996). Differential expression of normal and mutant Huntington's disease gene alleles. Neurobiol. Dis. 3:183–190.

    PubMed  Google Scholar 

  39. Klement, I.A., Skinner, P.J., Kaytor, M.D., Yi, H., Hersch, S.M., Clark, H.B., Zoghbi, H.Y., and Orr, H.T. (1998). Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95:41–53.

    PubMed  Google Scholar 

  40. Wellington, C.L., Ellerby, L.M., Hackam, A.S., Margolis, R.L., Trifiro, M.A., Singaraja, R., McCutcheon, K., Salvesen, G.S., Propp, S.S., Bromm, M., Rowland, K.J., Zhang, T., Rasper, D., Roy, S., Thornberry, N., Pinsky, L., Kakizuka, A., Ross, C.A., Nicholson, D.W., Bredesen, D.E., and Hayden, M.R. (1998). Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273:9158–9167.

    PubMed  Google Scholar 

  41. Cooper, J.K., Schilling, G., Peters, M.F., Herring, W.J., Sharp, A.H., Kaminsky, Z., Masone, J., Khan, F.A., Delanoy, M., Borchelt, D.R., Dawson, V.L., Dawson, T.M., and Ross, C.A. (1998). Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum. Mol. Genet. 7:783–790.

    PubMed  Google Scholar 

  42. Hackam, A.S., Singaraja, R., Wellington, C.L., Metzler, M., McCutcheon, K., Zhang, T., Kalchman, M., and Hayden, M.R. (1998). The influence of huntingtin protein size on nuclear localization and cellular toxicity. J. Cell Biol. 141:1097–1105.

    PubMed  Google Scholar 

  43. Li, S.H., and Li, X.J. (1998). Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Hum. Mol. Genet. 7:777–782.

    PubMed  Google Scholar 

  44. Liu, Y.F. (1998). Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J. Biol. Chem. 273:28873–28877.

    PubMed  Google Scholar 

  45. Lunkes, A., and Mandel, J.L. (1998). A cellular model that recapitulates major pathogenic steps of Huntington's disease. Hum. Mol. Genet. 7:1355–1361.

    PubMed  Google Scholar 

  46. Martindale, D., Hackam, A., Wieczorek, A., Ellerby, L., Wellington, C., McCutcheon, K., Singaraja, R., Kazemi-Esfarjani, P., Devon, R., Kim, S.U., Bredesen, D.E., Tufaro, F., and Hayden, M.R. (1998). Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet. 18:150–154.

    PubMed  Google Scholar 

  47. Saudou, F., Finkbeiner, S., Devys, D., and Greenberg, M.E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55–66.

    PubMed  Google Scholar 

  48. Dragatsis, I., Efstratiadis, A., and Zeitlin, A. (1998). Mouse mutant embryos lacking huntingtin are rescued from lethality by wild-type extraembryonic tissues. Development 125:1529–1539.

    PubMed  Google Scholar 

  49. Gusella, J.F., and MacDonald, M.E. (1998). Huntingtin: A single bait hooks many species. Curr. Opin. Neurobiol. 8:425–430.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C.C., Faber, P.W., Persichetti, F. et al. Amyloid Formation by Mutant Huntingtin: Threshold, Progressivity and Recruitment of Normal Polyglutamine Proteins. Somat Cell Mol Genet 24, 217–233 (1998). https://doi.org/10.1023/B:SCAM.0000007124.19463.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SCAM.0000007124.19463.e5

Keywords

Navigation