Skip to main content
Log in

Backbone dynamics of the 8 kDa dynein light chain dimer reveals molecular basis of the protein's functional diversity

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Axonemal and cytoplasmic dyneins share a highly conserved 8 kDa light chain (DLC8) for motor assembly and function. Other than serving as a light chain of dynein complexes, DLC8 has been shown to bind a larger number of proteins with diverse biological functions including cell cycle control, apoptosis, and cell polarity maintenance. Therefore, DLC8 is likely a multifunctional regulatory protein. DLC8 exists as a dimer in solution, and the protein dimer is capable of binding to two target molecules. In this work, the backbone dynamics of DLC8, both in its apo- and target-peptide bound forms, were characterized by 15N NMR relaxation studies. The relaxation data were analyzed using model-free approach. We show that the target peptide-binding region of apo-DLC8 experiences microsecond-to-millisecond time scale conformational fluctuation, suggesting that the target-binding region of the protein is capable of adjusting its shape and size in responding to its various targets. The conformational breathing of the target-binding region of apo-DLC8 was also supported by backbone amide exchange experiment. Such segmental conformational motion of the protein is significantly reduced upon forming a complex with a target peptide. The dynamic properties of DLC8 in solution provide insight into the protein's diverse sequence-dependent target binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckwith, S.M., Roghi, C.H., Liu, B. and Ronald Morris, N. (1998) J. Cell. Biol., 143, 1239–1247.

    Google Scholar 

  • Crepieux, P., Kwon, H., Leclerc, N., Spencer, W., Richard, S., Lin, R. and Hiscott, J. (1997) Mol. Cell. Biol., 17, 7375–7385.

    Google Scholar 

  • Crivici, A. and Ikura, M. (1995) Annu. Rev. Biophys. Biomol. Struct., 24, 85–116.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • Dick, T., Ray, K., Salz, H.K. and Chia, W. (1996) Mol. Cell. Biol., 16, 1966–1977.

    Google Scholar 

  • Espindola, F.S., Suter, D.M., Partata, L.B., Cao, T., Wolenski, J.S.

  • Cheney, R.E., King, S.M. and Mooseker, M.S. (2000) Cell Motil. Cytoskeleton, 47, 269–281.

    Google Scholar 

  • Fan, J.S., Zhang, Q., Li, M., Tochio, H., Yamazaki, T., Shimizu, M. and Zhang, M. (1998) J. Biol. Chem., 273, 33472–33481.

    Google Scholar 

  • Fan, J.S., Zhang, Q., Tochio, H., Li, M. and Zhang, M. (2001) J. Mol. Biol., 306, 97–108.

    Google Scholar 

  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.

    Google Scholar 

  • Feher, V.A. and Cavanagh, J. (1999) Nature, 400, 289–293.

    Google Scholar 

  • Garrett, D.S., Powers, R., Gronenborn, A.M. and Clore, G.M. (1991) J. Magn. Reson., 95, 214–220.

    Google Scholar 

  • Gill, S.R., Cleveland, D.W. and Schroer, T.A. (1994) Mol. Biol. Cell, 5, 645–654.

    Google Scholar 

  • Gryk, M.R., Jardetzky, O., Klig, L.S. and Yanofsky, C. (1996) Protein Sci., 5, 1195–1197.

    Google Scholar 

  • Harrison, A., Olds-Clarke, P. and King, S.M. (1998) J. Cell. Biol., 140, 1137–1147.

    Google Scholar 

  • Herzig, R.P., Andersson, U. and Scarpulla, R.C. (2000) J. Cell. Sci., 113, 4263–4273.

    Google Scholar 

  • Hirokawa, N. (1998) Science, 279, 519–526.

    Google Scholar 

  • Holzbaur, E.L. and Vallee, R.B. (1994) Annu. Rev. Cell Biol., 10, 339–372.

    Google Scholar 

  • Hughes, S.M., Vaughan, K.T., Herskovits, J.S. and Vallee, R.B. (1995) J. Cell. Sci., 108, 17–24.

    Google Scholar 

  • Jacob, Y., Badrane, H., Ceccaldi, P.E. and Tordo, N. (2000) J. Virol., 74, 10217–10222.

    Google Scholar 

  • Jaffrey, S.R. and Snyder, S.H. (1996) Science, 274, 774–777.

    Google Scholar 

  • Karki, S. and Holzbaur, E.L. (1995) J. Biol. Chem., 270, 28806–28811.

    Google Scholar 

  • Kay, L.E., Muhandiram, D.R., Wolf, G., Shoelson, S.E. and Forman-Kay, J.D. (1998) Nat. Struct. Biol., 5, 156–163.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • King, S.M. (2000) Biochim. Biophys. Acta, 1496, 60–75.

    Google Scholar 

  • King, S.M., Barbarese, E., Dillman, III, J.F., Patel-King, R.S., Carson, J.H. and Pfister, K.K. (1996a) J. Biol. Chem., 271, 19358–19366.

    Google Scholar 

  • King, S.M., Dillman, III, J.F., Benashski, S.E., Lye, R.J., Patel-King, R.S. and Pfister, K.K. (1996b) J. Biol. Chem., 271, 32281–32287.

    Google Scholar 

  • King, S.M. and Patel-King, R.S. (1995a) J. Cell. Sci., 108, 3757–3764.

    Google Scholar 

  • King, S.M. and Patel-King, R.S. (1995b) J. Biol. Chem., 270, 11445–11452.

    Google Scholar 

  • King, S.M., Patel-King, R.S., Wilkerson, C.G. and Witman, G.B. (1995) J. Cell. Biol., 131, 399-409.

    Google Scholar 

  • King, S.M., Wilkerson, C.G. and Witman, G.B. (1991) J. Biol.Chem., 266, 8401–8407.

    Google Scholar 

  • Kraulis, P.J. (1991) J. Appl. Crystallogr., 24, 946–950.

    Google Scholar 

  • Kriwacki, R.W., Hengst, L., Tennant, L., Reed, S.I. and Wright, P.E. (1996) Proc. Natl. Acad. Sci. USA, 93, 11504–11509.

    Google Scholar 

  • Lee, L.K., Rance, M., Chazin, W.J. and Palmer, III, A.G. (1997) J. Biomol. NMR, 9, 287–298.

    Google Scholar 

  • Liang, J., Jaffrey, S.R., Guo, W., Snyder, S.H. and Clardy, J. (1999) Nat. Struct. Biol., 6, 735–740.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • Lo, K.W., Naisbitt, S., Fan, J.S., Sheng, M. and Zhang, M. (2001) J. Biol. Chem., 276, 14059–14066.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, III, A.G. (1995) J. Mol. Biol., 246, 144–163.

    Google Scholar 

  • Meador, W.E., Means, A.R. and Quiocho, F.A. (1993) Science, 262, 1718–1721.

    Google Scholar 

  • Merritt, E. and Murphy, M. (1994) Acta. Cryst., D50, 869–873.

    Google Scholar 

  • Naisbitt, S., Valtschanoff, J., Allison, D.W., Sala, C., Kim, E., Craig, A. M., Weinberg, R.J. and Sheng, M. (2000) J. Neurosci., 20, 4524–4534.

    Google Scholar 

  • Palmer, III, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • Patel-King, R.S., Benashski, S.E., Harrison, A. and King, S.M. (1997) J. Cell. Biol., 137, 1081–1090. 114

    Google Scholar 

  • Pazour, G.J., Koutoulis, A., Benashski, S.E., Dickert, B.L., Sheng, H., Patel-King, R.S., King, S.M. and Witman, G.B. (1999) Mol. Biol. Cell, 10, 3507–3520.

    Google Scholar 

  • Pazour, G.J., Wilkerson, C.G. and Witman, G.B. (1998) J. Cell Biol., 141, 979–992.

    Google Scholar 

  • Phillis, R., Statton, D., Caruccio, P. and Murphey, R.K. (1996) Development, 122, 2955–2963.

    Google Scholar 

  • Piperno, G. and Luck, D.J. (1979) J. Biol. Chem., 254, 3084–3090.

    Google Scholar 

  • Puthalakath, H., Huang, D.C., O'Reilly, L.A., King, S.M. and Strasser, A. (1999) Mol. Cell, 3, 287–296.

    Google Scholar 

  • Raux, H., Flamand, A. and Blondel, D. (2000) J. Virol., 74, 10212–10216.

    Google Scholar 

  • Schnorrer, F., Bohmann, K. and Nusslein-Volhard, C. (2000) Nat. Cell. Biol., 2, 185–190.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995a) J. Am. Chem. Soc., 117, 12562–12566.

    Google Scholar 

  • Tjandra, N., Kuboniwa, H., Ren, H. and Bax, A. (1995b) Eur. J. Biochem., 230, 1014–1024.

    Google Scholar 

  • Tochio, H., Hung, F., Li, M., Bredt, D.S. and Zhang, M. (2000) J. Mol. Biol., 295, 225–237.

    Google Scholar 

  • Tochio, H., Ohki, S., Zhang, Q., Li, M. and Zhang, M. (1998) Nat. Struct. Biol., 5, 965–969.

    Google Scholar 

  • Vallee, R.B. and Sheetz, M.P. (1996) Science, 271, 1539–1544.

    Google Scholar 

  • Vaughan, K.T. and Vallee, R.B. (1995) J. Cell Biol., 131, 1507–1516.

    Google Scholar 

  • Wyss, D.F., Dayie, K.T. and Wagner, G. (1997) Protein Sci., 6, 534–542.

    Google Scholar 

  • Zhang, M., Li, M., Wang, J.H. and Vogel, H.J. (1994) J. Biol. Chem., 269, 15546–15552.

    Google Scholar 

  • Zhang, M. and Yuan, T. (1998) Biochem. Cell. Biol., 76, 313–323.

    Google Scholar 

  • Zidek, L., Novotny, M.V. and Stone, M.J. (1999) Nat. Struct. Biol., 6, 1118–11121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, JS., Zhang, Q., Tochio, H. et al. Backbone dynamics of the 8 kDa dynein light chain dimer reveals molecular basis of the protein's functional diversity. J Biomol NMR 23, 103–114 (2002). https://doi.org/10.1023/A:1016332918178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016332918178

Navigation