Skip to main content
Log in

A 169-base pair tandem repeat DNA marker for subtelomeric heterochromatin and chromosomal rearrangements in aphids of the Myzus persicae group

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Numerous copies of a 169-base pair DNA sequence (Myzus persicae group repeat; MpR) occur at subtelomeric locations on all chromosomes of three members of the Myzus persicae species group (Myzus persicae, M. antirrhinii, M. certus). MpR occurs in large tandem arrays at both ends of all autosomes of the standard 2n = 12 karyotype, and near one end of the X chromosome (the end opposite to the nucleolar organizer) and is estimated to make up about 5% of the genome (a total of about 200 000 copies). Locations of MpR were compared in various karyotypes to determine the likely nature of the rearrangements (fusions, dissociations, translocations) that are found in this species group which, like other Hemiptera, has holocentric chromosomes that are devoid of morphological markers. Aphid clones heterozygous for autosome dissociations do not have any detectable MpR at 'new' chromosome ends, indicating that this sequence is not involved in 'capping' of chromosomes. However, a clone with a de novo autosome fusion had an interstitial block of MpR marking the point of fusion, and clones heterozygous for an autosomal 1,3 translocation had MpR from autosome 1 translocated to a new site on autosome 3. The isolation from M. antirrhinii of the telomeric repeat TTAGG, which is found in several insect groups, is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bass HW, Marshall WF, Sedat JW, Agard DA, Canda WZ (1997) Telomeres cluster de novo before initiation of synapsis: a three dimensional analysis of telomere positions before and during meiotic prophase. J Cell Biol 137: 5–18.

    Google Scholar 

  • Bizzaro D, Manicardi GC, Bianchi U (1996) Chromosomal localization of a highly repeated EcoR1 fragment in Megoura viciae (Homoptera, Aphididae) by nick translation and fluorescence in situ hybridization. Chrom Res 4: 392–396.

    Google Scholar 

  • Blackman RL (1971) Variation in the photoperiodic response within natural populations of Myzus persicae (Sulz.). Bull Entomol Res 60: 533–546.

    Google Scholar 

  • Blackman RL (1990) The chromosomes of Lachnidae. Acta Phytopath et Ent Hung 25: 273–282.

    Google Scholar 

  • Blackman RL, Paterson JC (1986) Separation of Myzus (Nectarosiphon) antirrhinii (Macchiati) from Myzus (N.) persicae (Sulzer) and related species in Europe (Homoptera: Aphididae). Syst Entomol 11: 267–276.

    Google Scholar 

  • Blackman RL, Spence JM (1994) The effects of temperature on aphid morphology, using a multivariate approach. Eur J Entomol 91: 7–22.

    Google Scholar 

  • Blackman RL, Takada H, Kawakami K (1978) Chromosomal rearrangement involved in the insecticidal resistance of Myzus persicae. Nature 271: 450–452.

    Google Scholar 

  • Blackman RL, Spence JM, Field LM, Devonshire AL (1995) Chromosomal location of the amplified esterase genes conferring resistance to insecticides in the aphid Myzus persicae. Heredity 75: 297–302.

    Google Scholar 

  • Blackman RL, Spence JM, Field LM, Javed N, Devine G, Devonshire AL (1996) Inheritance of the amplified esterase genes responsible for insecticide resistance in Myzus persicae (Homoptera: Aphididae). Heredity 77: 154–167.

    Google Scholar 

  • Collet C, Westerman M (1984) Interspersed distribution patterns of C-bands and satellite DNA in the holocentric chromosomes of Luzula flaccida (Juncaceae). Genetica 63: 175–179.

    Google Scholar 

  • Dernburg AF, Sedat JW, Hawley RS (1996) Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86: 135–146.

    Google Scholar 

  • Finston TL, Hebert PD, Foottit RB (1995) Genome size variation in aphids. Insect Biochem Mol Biol 25 :2: 189–196.

    Google Scholar 

  • Kipling D (1995) The Telomere. Oxford: Oxford University Press.

    Google Scholar 

  • Lagowski JM, Yu Mei YW, Forrest HS, Laird CD (1973) Dispersity of repeat DNA sequences in Oncopeltus fasciatus, an organism with diffuse centromeres. Chromosoma 43: 349–373.

    Google Scholar 

  • Lohe AR, Hilliker AJ (1995) Return of the H-word (heterochromatin) [Review]. Curr Opin Genet Dev 5: 746–755.

    Google Scholar 

  • Loidl J (1990) The initiation of meiotic chromosome pairing: the cytological view. Genome 33: 759–778.

    Google Scholar 

  • Mason JA, Beissmann H (1995) The unusual telomeres of Drosophila. Trends Genet 11 58–62.

    Google Scholar 

  • Meyne J, Hirai H, Imai HT (1995) FISH analysis of the telomere sequences of bulldog ants (Myrmecia: Formicidae). Chromosoma 104: 14–18.

    Google Scholar 

  • Okazaki S, Tsuchida K, Maekawa H, Ishikawa H, Fujiwara H (1993) Identification of a pentanucleotide telomeric sequence (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol Cell Biol 13: 1424–1432.

    Google Scholar 

  • Panzera F, Perez R, Panzera Y, Alvarez F, Scvortzoff E, Salvatella R (1995) Karyotype evolution in holocentric chromosomes of three related species of triatomines (Hemiptera: Reduviidae). Chromosom Res 3: 143–150.

    Google Scholar 

  • Plohl M, Lucijanic-Justic V, Ugarkovic D, Petitpierre E, Juan C (1993) Satellite DNA and heterochromatin of the flour beetle Tribolium confusum. Genome 36: 467–475.

    Google Scholar 

  • Porter CA (1994) Organization and chromosomal location of repetitive DNA sequences in three species of squamate reptiles. Chromosom Res 2: 263–273.

    Google Scholar 

  • Rattner JB, Lin Chyi-C (1988) The organization of the centromere and centromeric heterochromatin. In: Verma RS, ed. Heterochromatin: Molecular and Structural Aspects. Cambridge: Cambridge University Press, pp 203–227.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Scherthan H, Bähler J, Kohli J (1994) Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J Cell Biol 127: 273–285.

    Google Scholar 

  • Scherthan H, Weich S, Schwegler H, Heyting C, Härle M, Cremer T (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol. 134: 1109–1125.

    Google Scholar 

  • Schweizer D (1980) Fluorescent chromosome banding in plants: applicatons, mechanisms and implications for chromosome structure. In: Davies DR, Hopwood RA, eds. The Plant Genome, Proc. 4th John Innes Symp. Norwich: John Innes Charity, pp 61–72.

    Google Scholar 

  • Sunkel CE, Coelho PA (1995) The elusive centromere-sequence divergence and functional conservation. Curr Opin Genet Dev 5: 756–767.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spence, J.M., Blackman, R.L., Testa, J.M. et al. A 169-base pair tandem repeat DNA marker for subtelomeric heterochromatin and chromosomal rearrangements in aphids of the Myzus persicae group. Chromosome Res 6, 167–175 (1998). https://doi.org/10.1023/A:1009251415941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009251415941

Navigation