Skip to main content
Log in

Transport of Ca2+ from Sarcoplasmic Reticulum to Mitochondria in Rat Ventricular Myocytes

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Studies with electron microscopy have shown that sarcoplasmic reticulum (SR) andmitochondria locate close to each other in cardiac muscle cells. We investigated the hypothesis thatthis proximity results in a transient exposure of mitochondrial Ca2+ uniporter (CaUP) to highconcentrations of Ca2+ following Ca2+ release from the SR and thus an influx of Ca2+into mitochondria. Single ventricular myocytes of rat were skinned by exposing them to aphysiological solution containing saponin (0.2 mg/ml). Cytosolic Ca2+ concentration ([Ca2+]c)and mitochondrial Ca2+ concentration ([Ca2+]m) were measured with fura-2 and rhod2,respectively. Application of caffeine (10 mM) induced a concomitant increase in[Ca2+]c and [Ca2+]m.Ruthenium red, at concentrations that block CaUP but not SR release, diminished thecaffeine-induced increase in [Ca2+]m but not[Ca2+]c. In the presence of 1 mM BAPTA, a Ca2+ chelator,the caffeine-induced increase in [Ca2+]m was reduced substantially less than [Ca2+]c. Moreover,inhibition of SR Ca2+ pump with two different concentrations of thapsigargin caused anincrease in [Ca2+]m, which was related to the rate of [Ca2+]c increase. Finally, electronmicroscopy showed that sites of junctions between SR and T tubules from which Ca2+ is released,or Ca2+ release units, CRUs, are preferentially located in close proximity to mitochondria.The distance between individual SR Ca2+ release channels (feet or ryanodine receptors) isvery short, ranging between approximately 37 and 270 nm. These results are consistent withthe idea that there is a preferential coupling of Ca2+ transport from SR to mitochondria incardiac muscle cells, because of their structural proximity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Babcock, D. F., Herrington, J., Goodwin, P. C., Park, Y. B., and Hille, B. (1997). J. Cell Biol. 136, 833-844.

    Google Scholar 

  • Babcock, D. F., and Hille, B. (1998). Current Opinion Neurobiol. 8, 398-404.

    Google Scholar 

  • Bers, D. M., Bassani, J.W., and Bassani, R. A. (1993). Cardiovasc. Res. 27, 1772-1777.

    Google Scholar 

  • Carafoli, E. (1987). Annu. Rev. Biochem. 56, 395-433.

    Google Scholar 

  • Crompton, M., Sigel, E., Salzmann, M., and Carafoli, E. (1976). Eur. J. Biochem. 69, 429-434.

    Google Scholar 

  • Fabiato, A. (1983). Amer. J. Physiol. 245, C1-C14.

    Google Scholar 

  • Fabiato, A. (1988). Methods Enzymol. 157, 378-417.

    Google Scholar 

  • Gillis, J. M. (1997). J. Muscle Res. Cell Motility 18, 473-483.

    Google Scholar 

  • Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). J. Biol. Chem. 260, 3440-3450.

    Google Scholar 

  • Gunter, T. E., Gunter, K. K., Sheu, S-S., and Gavin, C. E. (1994). Amer. J. Physiol. 267, C313-C339.

    Google Scholar 

  • Hajnóczky, G., Robb-Gaspers, L. D., Seitz, M. B., and Thomas, A. P. (1995). Cell 82, 415-424.

    Google Scholar 

  • Hajnóczky, G., Csordas, G., and Thomas, A. P. (1998). Frontiers of Mitochondrial Research, 33P.

  • Hüser, J., Blatter, L. A., and Sheu, S-S. (2000). J. Bioener. Biomembr. 32, 00-00.

    Google Scholar 

  • Isenberg, G., Han, S., Schiefer, A., and Wendt-Gallitelli, M. F. (1993). Cardiovasc. Res. 27, 1800-1809.

    Google Scholar 

  • Jou, M-J., Peng, T-I., and Sheu, S-S. (1996). J. Physiol. 497, 299-308.

    Google Scholar 

  • Miyata, H., Silverman, H. S., Sollott, S. J., Lakatta, E. G., Stern, M. D., and Hansford, R. G. (1991). Amer. Physiol. 261, H1123-H1134.

    Google Scholar 

  • Neary, P., Steele, D. S., Orchard, C. H., and Smith G. L. (1996). J. Physiol. 497, 7P.

    Google Scholar 

  • Nieminen, A-L., Dawson, T. L., Gores, G. J., Kawanishi, T., Herman, B., and Lemasters, J. J. (1990). Biochem. Biophys. Res. Commun. 167, 600-606.

    Google Scholar 

  • Ramesh, V., Sharma, V. K., Sheu, S-S., and Franzini-Armstrong, C. (1985). Ann. N. Y. Acad. Sci. 853, 341-344.

    Google Scholar 

  • Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993). Science 262, 744-747.

    Google Scholar 

  • Rizzuto, R., Bastianutto, C., Brini, M., Murgia, M., and Pozzan, T (1994). J. Cell. Biol. 126, 1183-1194.

    Google Scholar 

  • Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., and Pozzan, T (1998). Science, 280, 1763-1766.

    Google Scholar 

  • Scarpa, A., and Graziotti, P. (1973). J. Gen. Physiol. 62, 756-772.

    Google Scholar 

  • Sharma, V. K., Colecraft, H. M., Wang, D. X., Levey, A. I., Grigorenko, E. V., Yeh H. H., and Sheu, S-S. (1996). Cir. Res. 79, 86-93.

    Google Scholar 

  • Sheu, S-S., Sharma, V. K., Ramesh, V., and Franzini-Armstrong, C. (1998). Frontiers of Mitochondrial Research 84P.

  • Sommer, J. R., and Johnson, E., A. (1979). In Handbook of Physiology: The Cardiovascular System (Berne, R. M. ed.), Vol. I, The Heart, American Physiological Society, Washington, DC, pp. 113-186.

    Google Scholar 

  • Thayer, S. A., and Miller, R. J. (1990). J. Physiol. 425, 85-116.

    Google Scholar 

  • Trollinger, D. R., Cascio, W. E., and Lemasters, J. J. (1997). Biochem. Biophys. Res. Commun. 236, 738-742.

    Google Scholar 

  • Tsien, R. Y., and Bacskai, B. J. (1995). In Handbook of Biological Confocal Microscopy (Pawley, J. B. ed.), Plenum Press, New York, pp. 459-478.

    Google Scholar 

  • Vasington, F. D., Gazzotti, P., Tiozzo, R., and Carafoli, E. (1972). Biochim. Biophys. Acta 256, 43-54.

    Google Scholar 

  • Wendt-Gallitelli, M-F, and Isenberg, G. (1991). J. Physiol. 435, 349-372.

    Google Scholar 

  • Weber, A., and Herz, R. (1968). J. Gen. Physiol. 52, 750-759.

    Google Scholar 

  • Zhou, Z., Matlib, M. A., and Bers, D. M. (1998). J. Physiol. 507, 379-403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-S Sheu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V.K., Ramesh, V., Franzini-Armstrong, C. et al. Transport of Ca2+ from Sarcoplasmic Reticulum to Mitochondria in Rat Ventricular Myocytes. J Bioenerg Biomembr 32, 97–104 (2000). https://doi.org/10.1023/A:1005520714221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005520714221

Navigation