Developmental Cell
Volume 33, Issue 1, 6 April 2015, Pages 47-55
Journal home page for Developmental Cell

Article
Malignant Drosophila Tumors Interrupt Insulin Signaling to Induce Cachexia-like Wasting

https://doi.org/10.1016/j.devcel.2015.03.001Get rights and content
Under an Elsevier user license
open archive

Highlights

  • Malignant fly tumors induce wasting of host adipose, muscle, and gonadal tissue

  • ImpL2/IGFBP, secreted from malignant tumors, is necessary and sufficient for wasting

  • ImpL2/IGFBP interrupts systemic insulin signaling to induce insulin resistance

Summary

Tumors kill patients not only through well-characterized perturbations to their local environment but also through poorly understood pathophysiological interactions with distant tissues. Here, we use a Drosophila tumor model to investigate the elusive mechanisms underlying such long-range interactions. Transplantation of tumors into adults induces robust wasting of adipose, muscle, and gonadal tissues that are distant from the tumor, phenotypes that resemble the cancer cachexia seen in human patients. Notably, malignant, but not benign, tumors induce peripheral wasting. We identify the insulin growth factor binding protein (IGFBP) homolog ImpL2, an antagonist of insulin signaling, as a secreted factor mediating wasting. ImpL2 is sufficient to drive tissue loss, and insulin activity is reduced in peripheral tissues of tumor-bearing hosts. Importantly, knocking down ImpL2, specifically in the tumor, ameliorates wasting phenotypes. We propose that the tumor-secreted IGFBP creates insulin resistance in distant tissues, thus driving a systemic wasting response.

Cited by (0)