Skip to main content
Log in

RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments

  • Forum
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Sidén-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, Woodage T, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Adelman ZN, Blair CD, Carlson JO, Beaty BJ, Olson KE (2001) Sindbis virus-induced silencing of dengue viruses in mosquitoes. Insect Mol Biol 10:265–273

    Article  CAS  PubMed  Google Scholar 

  • Andrade PP, Melo MA, Kido EA (2014) Post-release monitoring: the Brazilian system, its aims and requirements for information. Transgenic Res 23:1043–1047

  • Aragão FJ, Faria JC (2009) First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088

    Article  PubMed  Google Scholar 

  • Aronstein K, Pankew T, Saldivar E (2006) SID-1 is implicated in systemic gene silencing in the honey bee. J Apicult Res 45:20–24

  • Bailey L, Ball BV (1991) Honey bee pathology, 2nd edn. Academic, London

    Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Belles X (2010) Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol 55:111–128

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bumble Bee Bombus terrestris Genome Sequencing Consortium (2015) Genome Biol 443:931–949

    Google Scholar 

  • Braxton SM, Onstad DW, Dockter DE, Giordano R, Larsson R, Humber RA (2003) Description and analysis of two internet-based databases of insect pathogens: EDWIP and VIDIL. J Invertebr Pathol 83:185–195

    Article  CAS  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen YP, Pettis JS, Corona M, Chen WP, Li CJ, Spivak M, Visscher PK, DeGrandi-Hoffman G, Boncristiani H, Zhao Y, vanEngelsdorp D, Delaplane K, Solter L, Drummond F, Kramer M, Lipkin WI, Palacios G, Hamilton MC, Smith B, Huang SK, Zheng HQ, Li JL, Zhang X, Zhou AF, Wu YL, Zhou JZ, Lee M-L, Teixeira EW, Li GZ, Evans JD (2014) Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health. PLoS Pathog 10(7):e1004261. doi:10.1371/journal.ppat.1004261

    Article  PubMed Central  PubMed  Google Scholar 

  • Christiaens O, Smagghe G (2014) The challenge of RNAi-mediated control of hemipterans. Curr Opin Insect Sci 6:15–21

    Article  Google Scholar 

  • Christiaens O, Swevers L, Smagghe G (2014) DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53:307–314

    Article  CAS  PubMed  Google Scholar 

  • CTNbio (2014) Brazilian legislation for risk assessments. http://www.ctnbio.gov.br/index.php/content/view/12840.html Accessed 18 Feb 2015

  • CTNbio (2014) Commercial Approvals by CTNBio. http://www.ctnbio.gov.br/index.php/content/view/12492.html Accessed 18 Feb 2015

  • CTNbio (2014) Technical Opinion No. 3024/2011—Commercial release of genetically modified bean resistant to Bean Golden Mosaic Virus (Bean golden mosaic virus—BGMV), event Embrapa 5.1—Case No. 01200.005161/2010-86. http://www.ctnbio.gov.br/index.php/content/view/12492.html Accessed 18 Feb 2015

  • Dillin A (2003) The specifics of small interfering RNA specificity. PNAS 100:6289–6291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • EFSA (2014) International scientific workshop ‘Risk assessment considerations for RNAi-based GM plants. http://www.efsa.europa.eu/en/events/event/140604.htm Accessed 18 Feb 2015

  • El-Shesheny I, Hajeri S, El-Hawary I, Gowda S, Killiny N (2013) Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS ONE 8(5):e65392. doi:10.1371/journal.pone.0065392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ender C, Meister G (2010) Argonaute proteins at a glance. J Cell Sci 123:1819–1823

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fsanz (2013) Response to Heinemann et al. on the regulation of GM crops and foods developed using gene silencing. http://www.foodstandards.govt.nz/consumer/gmfood/Documents/Heinemann%20Response%20210513.pdf. Accessed 18 Feb 2015

  • Fsanz (2014) Food derived from Reduced Lignin Lucerne Line KK179. http://www.foodstandards.gov.au/code/applications/Documents/A1085-GM-AppR.pdf Accessed 18 Feb 2015

  • Garbian Y, Maori E, Kalev H, Shafir S, Sela I (2012) Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLoS Pathog 8(12):e1003035. doi:10.1371/journal.ppat.1003035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong L, Chen Y, Hu Z, Hu M (2013) Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions. PLoS ONE 8(5):e62990. doi:10.1371/journal.pone.0062990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Knipple DC (2013) Recent advances in RNA interference research in insects: implications for future insect pest management strategies. Crop Prot 45:36–40

    Article  CAS  Google Scholar 

  • Haasnoot J, Westerhout EM, Berkhout B (2007) RNA interference against viruses: strike and counterstrike. Nat Biotechnol 25:1435–1443

    Article  CAS  PubMed  Google Scholar 

  • Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  Google Scholar 

  • Hunter W, Ellis J, vanEngelsdorp D, Hayes J, Westervelt D, Glick E, Williams M, Sela I, Maori E, Pettis J, Cox-Foster D, Paldi N (2010) Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog 6(12):e1001160. doi:10.1371/journal.ppat.1001160

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunter WB, Glick E, Paldi N, Bextine BR (2012) Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest population suppression. Southwest Entomol 37:85–87

  • Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235

    Article  CAS  PubMed  Google Scholar 

  • Heinemann JA, Agapito-Tenfen SZ, Carman JA (2013) A comparative evaluation of the regulation of GM crops or products containing dsRNA and suggested improvements to risk assessments. Environ Int 55:43–55

    Article  CAS  PubMed  Google Scholar 

  • International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045

    Article  Google Scholar 

  • James C (2014). Global Status of Commercialized Biotech/GM Crops: 2014. http://www.isaaa.org/resources/publications/briefs/46/ Accessed 29 Jan 2015

  • Ketting FR (2011) The many faces of RNAi. Dev Cell 20:148–160

    Article  CAS  PubMed  Google Scholar 

  • Killiny N, Hajeri S, Tiwari S, Gowda S, Stelinski LL (2014) Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri. PLoS ONE 9(10):e110536. doi:10.1371/journal.pone.0110536

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim Y-J, Nachman RJ, Aimanova K, Gill S, Adams ME (2008) The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: identification, functional expression, and structure–activity relationships of ligand analogs. Peptides 29:268–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar P, Pandit SS, Baldwin IT (2012) Tobacco rattle virus vector: a rapid and transient means of silencing Manduca sexta genes by plant mediated RNA interference. PLoS ONE 7(2):e31347. doi:10.1371/journal.pone.0031347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  • Lee D-W, Shrestha S, Kim AY, Park SJ, Yang CY, Kim Y, Koh HY (2011) RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.). Insect Biochem Mol Biol 4:236–243

    Article  Google Scholar 

  • Lipardi C, Wei Q, Paterson BM (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107:297–307

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Wang X, Yu D, Kang L (2012) The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust. RNA Biol 9:663–671

    Article  CAS  PubMed  Google Scholar 

  • Lundgren JG, Duan JJ (2013) RNAi-based insecticidal crops: potential effects on nontarget species. Bioscience 8:657–665

    Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Xue XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant- mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maori E, Paldi N, Shafir S, Kalev H, Tsur E, Glick E, Sela I (2009) IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol Biol 18:55–60

    Article  CAS  PubMed  Google Scholar 

  • Niu J, Meeus I, Cappelle K, Piot N, Smagghe G (2014) The immune response of the small interfering RNA pathway in the defense against bee viruses. Curr Opin Insect Sci 6:22–27

  • Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, Lai EC (2008) The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453:803–806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palli S.R. (2014) RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr Opin Insect Sci 3 DOI: 10.1016/j.cois.2014.09.011

  • Paldi N, Glick E, Oliva M, Zilberberg Y, Aubin L, Pettis JS, Chen YP, Evans JD (2010) Effective gene silencing of a microsporidian parasite associated with honey bee (Apis mellifera) colony declines. Appl Environ Microbiol 76:5960–5964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6(10):e25709. doi:10.1371/journal.pone.0025709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Preall JB, Sontheimer EJ (2005) RNAi: RISC gets loaded. Cell 123:543–553

    Article  CAS  PubMed  Google Scholar 

  • Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  CAS  PubMed  Google Scholar 

  • Pridgeon JW, Zhao L, Becnel JJ, Strickman DA, Clark GG, Linthicum KJ (2008) Topically applied AaeIAP1 double-stranded RNA kills female adults of Aedes aegypti. J Med Entomol 45:414–420

    Article  CAS  PubMed  Google Scholar 

  • Roether S, Meister G (2011) Small RNAs derived from longer non-coding RNAs. Biochimie 93:1905–1915

    Article  CAS  Google Scholar 

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:96–119

    Article  Google Scholar 

  • Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458:346–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE (2013) Towards the elements of successful insect RNAi. J Insect Physiol 59:1212–1221

    Article  CAS  PubMed  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  CAS  PubMed  Google Scholar 

  • Siomi H, Siomi M (2009) On the road to reading the RNA-interference code. Nature 457:396–404

    Article  CAS  PubMed  Google Scholar 

  • Smagghe G, Swevers L (2014) Editorial overview: pests and resistance—RNAi research in insects. Curr Opin Insect Sci 6:1–2

    Article  Google Scholar 

  • Swevers L, Vanden Broeck J, Smagghe G (2013) The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis. Front Physiol 4:319. doi:10.3389/fphys.2013.00319

    Article  PubMed Central  PubMed  Google Scholar 

  • Swevers L, Smagghe G (2012) Use of RNAi for control of insect crop pests. In: Smagghe G, Diaz I. (eds) Arthropod-plant interactions: novel insights and approaches for IPM, Progress in Biological Control 14, Netherlands, pp 177–197

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    Article  CAS  PubMed  Google Scholar 

  • The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8(2):e1000313. doi:10.1371/journal.pbio.1000313

    Article  PubMed Central  Google Scholar 

  • Tian H, Peng H, Yao Q, Chen H, Xie Q et al (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE 4(7):e6225. doi:10.1371/journal.pone.0006225

    Article  PubMed Central  PubMed  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  CAS  PubMed  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10

    Article  PubMed Central  PubMed  Google Scholar 

  • Tribolium Genome Sequence Consortium (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  CAS  PubMed  Google Scholar 

  • US EPA (2014) RNAi technology as a pesticide: problem formulation for human health and ecological risk assessment. http://www.epa.gov/scipoly/sap/meetings/2014/january/012814minutes.pdf Accessed 20 Feb 2015

  • van Rij RP, Saleh MC, Berry B, Foo C, Houk A, Antoniewski C, Andino R (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20:2985–2995

    Article  PubMed Central  PubMed  Google Scholar 

  • Vodovar N, Saleh M-C (2012) Of insects and viruses: the role of small RNAs in insect defense. Adv Insect Physiol 42:1–36

    Article  Google Scholar 

  • Wang Y, Zhang H, Li H, Miao X (2011) Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS ONE 6(4):e18644. doi:10.1371/journal.pone.0018644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whangbo JS, Hunter CP (2008) Environmental RNA interference. Trends Genet 24:297–305

    Article  CAS  PubMed  Google Scholar 

  • Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832

    Article  CAS  PubMed  Google Scholar 

  • Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein sid-1. Science 295:2456–2459

    Article  CAS  PubMed  Google Scholar 

  • Xu WN, Han ZJ (2008) Cloning and phylogenetic analysis of sid-1-like genes from aphids. J Insect Sci 8:30

    Article  PubMed Central  Google Scholar 

  • Yegit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC (2006) Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127:747–757

    Article  Google Scholar 

  • Yu N, Christiaens O, Liu JM, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G (2013) Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20:4–14

  • Zha W, Peng X, Chen R, Du B, Zhu L, Guangcun H (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS ONE 6(5):e20504. doi:10.1371/journal.pone.0020504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693

    Article  PubMed  Google Scholar 

  • Zheng L, Martins-Green M, Altstein M, Njauw C-N (2007) Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor gene in Spodoptera littoralis larvae. Gene 393:20–30

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Xu JJ, Palli R, Ferguson J, Palli SR (2011) Ingested RNA: interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci 67:175–182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Zotti.

Additional information

Edited by Fernando L Cônsoli – ESALQ/USP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotti, M.J., Smagghe, G. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments. Neotrop Entomol 44, 197–213 (2015). https://doi.org/10.1007/s13744-015-0291-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-015-0291-8

Keywords

Navigation