Skip to main content
Log in

MilkAMP: a comprehensive database of antimicrobial peptides of dairy origin

  • Original Paper
  • Published:
Dairy Science & Technology

Abstract

The number of identified and characterized bioactive peptides derived from milk proteins is increasing. Although many antimicrobial peptides of dairy origin are now well known, important structural and functional information is still missing or unavailable to potential users. The compilation of such information in one centralized resource such as a database would facilitate the study of the potential of these peptides as natural alternatives for food preservation or to help thwart antibiotic resistance in pathogenic bacteria. To achieve this goal, we established MilkAMP, a new database that contains valuable information on antimicrobial peptides of dairy origin, including microbiological and physicochemical data. The current release of MilkAMP contains 371 entries, including 9 hydrolysates, 299 antimicrobial peptides, 23 peptides predicted as antimicrobial, and 40 non-active peptides. Freely available at http://milkampdb.org/, this database should be useful to help develop uses of biologically active peptides in both the pharmaceutical and food sectors. As more information about antimicrobial peptides becomes available, the database will be expanded and improved accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  • Baranyi M, Thomas U, Pellegrini A (2003) Antibacterial activity of casein-derived peptides isolated from rabbit (Oryctolagus cuniculus) milk. J Dairy Res 70(02):189–197. doi:10.1017/S0022029903006150

    Article  CAS  Google Scholar 

  • Bellamy W, Yamauchi K, Wakabayashi H, Takase M, Takakura N, Shimamura S, Tomita M (1994) Antifungal properties of lactoferricin B, a peptide derived from the N-terminal region of bovine lactoferrin. Lett Appl Microbiol 18(4):230–233. doi:10.1111/j.1472-765X.1994.tb00854.x

    Article  CAS  Google Scholar 

  • Bolscher JGM, van der Kraan MIA, Nazmi K, Kalay H, Grün CH, van’t Hof W, Veerman ECI, Nieuw Amerongen AV (2006) A one-enzyme strategy to release an antimicrobial peptide from the LF ampin-domain of bovine lactoferrin. Peptides 27(1):1–9

    Article  CAS  Google Scholar 

  • Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215

    Article  CAS  Google Scholar 

  • Carginale V, Trinchella F, Capasso C, Scudiero R, Riggio M, Parisi E (2004) Adaptive evolution and functional divergence of pepsin gene family. Gene 333:81–90. doi:10.1016/j.gene.2004.02.011

    Article  CAS  Google Scholar 

  • Choi J, Sabikhi L, Hassan A, Anand S (2012) Bioactive peptides in dairy products. Int J Dairy Technol 65(1):1–12. doi:10.1111/j.1471-0307.2011.00725.x

    Article  CAS  Google Scholar 

  • Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  • Gobbetti M, Stepaniak L, De Angelis M, Corsetti A, Di Cagno R (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit Rev Food Sci 42(3):223–239. doi:10.1080/10408690290825538

    Article  CAS  Google Scholar 

  • Gueguen Y, Garnier J, Robert L, Lefranc MP, Mougenot I, de Lorgeril J, Janech M, Gross PS, Warr GW, Cuthbertson B, Barracco MA, Bulet P, Aumelas A, Yang YS, Bo D, Xiang JH, Tassanakajon A, Piquemal D, Bachere E (2006) PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recommended nomenclature. Dev Comp Immunol 30(3):283–288. doi:10.1016/j.dci.2005.04.003

    Article  CAS  Google Scholar 

  • Guruprasad K, Reddy B, Pandit M (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    Article  CAS  Google Scholar 

  • Hammami R, Fliss I (2010) Current trends in antimicrobial agent research: chemo- and bioinformatics approaches. Drug Discov Today 15(13–14):540–546. doi:10.1016/j.drudis.2010.05.002

    Article  CAS  Google Scholar 

  • Hammami R, Zouhir A, Naghmouchi K, Ben Hamida J, Fliss I (2008) SciDBMaker: new software for computer-aided design of specialized biological databases. BMC Bioinforma 9(1):121

    Article  Google Scholar 

  • Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:D963–D968. doi:10.1093/nar/gkn655

    Article  CAS  Google Scholar 

  • Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 10(22)

  • Haney EF, Nazmi K, Lau F, Bolscher JGM, Vogel HJ (2009) Novel lactoferrampin antimicrobial peptides derived from human lactoferrin. Biochimie 91(1):141–154. doi:10.1016/j.biochi.2008.04.013

    Article  CAS  Google Scholar 

  • Hill RD, Lahav E, Givol D (1974) A rennin-sensitive bond in αs1 Β-casein. J Dairy Res 41(01):147–153. doi:10.1017/S0022029900015028

    Article  CAS  Google Scholar 

  • Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511. doi:10.1128/cmr.00056-05

    Article  CAS  Google Scholar 

  • Jones FS, Simms HS (1930) The bacterial growth inhibitor (lactenin) of milk. J Exp Med 51(2):327–339. doi:10.1084/jem.51.2.327

    Article  CAS  Google Scholar 

  • Kang JH, Lee MK, Kim KL, Hahm KS (1996) Structure–biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int J Pept Prot Res 48(4):357–363. doi:10.1111/j.1399-3011.1996.tb00852.x

    Article  CAS  Google Scholar 

  • Lahov E, Regelson W (1996) Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem Toxicol 34(1):131–145. doi:10.1016/0278-6915(95)00097-6

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  • López-Expósito I, Recio I (2008) Protective effect of milk peptides: antibacterial and antitumor properties. In: Bösze Z (ed) Bioactive Components of Milk, vol 606, Advances in Experimental Medicine and Biology. Springer, New York, pp 271–294

    Chapter  Google Scholar 

  • López-Expósito I, Gómez-Ruiz JÁ, Amigo L, Recio I (2006) Identification of antibacterial peptides from ovine alphas2-casein. Int Dairy J 16(9):1072–1080

    Article  Google Scholar 

  • Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008) BIOPEP database and other programs for processing bioactive peptide sequences. J Aoac Int 91(4):965–980

    CAS  Google Scholar 

  • Muñoz A, Marcos J (2006) Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides. J Appl Microbiol 101(6):1199–1207. doi:10.1111/j.1365-2672.2006.03089.x

    Article  Google Scholar 

  • Park YW (2009) Overview of bioactive components in milk and dairy products. In: Bioactive components in milk and dairy products. Wiley-Blackwell, pp 1–12. doi:10.1002/9780813821504.ch1

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. P Natl Acad Sci USA 85(8):2444–2448

    Article  CAS  Google Scholar 

  • Piotto SP, Sessa L, Concilio S, Iannelli P (2012) YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Ag 39(4):346–351. doi:10.1016/j.ijantimicag.2011.12.003

    Article  CAS  Google Scholar 

  • Seebah S, Suresh A, Zhuo SW, Choong YH, Chua H, Chuon D, Beuerman R, Verma C (2007) Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res 35:D265–D268. doi:10.1093/nar/gkl866

    Article  CAS  Google Scholar 

  • Seshadri Sundararajan V, Gabere MN, Pretorius A, Adam S, Christoffels A, Lehvaslaiho M, Archer JAC, Bajic VB (2012) DAMPD: a manually curated antimicrobial peptide database. Nucleic Acids Res 40 (Database issue):D1108-1112 doi: 10.1093/nar/gkr1063.

  • Strøm MB, Svendsen JS, Rekdal Ø (2000) Antibacterial activity of 15-residue lactoferricin derivatives. J Peptide Res 56(5):265–274. doi:10.1034/j.1399-3011.2000.00770.x

    Article  Google Scholar 

  • Strøm MB, Stensen W, Svendsen JS, Rekdal Ø (2001) Increased antibacterial activity of 15-residue murine lactoferricin derivatives. J Peptide Res 57(2):127–139. doi:10.1034/j.1399-3011.2001.00806.x

    Article  Google Scholar 

  • Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38:D774–D780. doi:10.1093/nar/gkp1021

    Article  CAS  Google Scholar 

  • Ueta E, Tanida T, Osaki T (2001) A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J Peptide Res 57(3):240–249. doi:10.1111/j.1399-3011.2001.00821.x

    Article  CAS  Google Scholar 

  • van der Kraan MIA, Groenink J, Nazmi K, Veerman ECI, Bolscher JGM, Nieuw Amerongen AV (2004) Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25(2):177–183

    Article  Google Scholar 

  • Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM (2002) Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem Cell Biol 80(1):49–63. doi:10.1139/o01-213

    Article  CAS  Google Scholar 

  • Wakabayashi H, Hiratani T, Uchida K, Yamaguchi H (1996) Antifungal spectrum and fungicidal mechanism of an N-terminal peptide of bovine lactoferrin. J Infect Chemother 1(3):185–189. doi:10.1007/bf02350646

    Article  CAS  Google Scholar 

  • Wakabayashi H, Matsumoto H, Hashimoto K, Teraguchi S, Takase M, Hayasawa H (1999) N-acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Ch 43(5):1267–1269

    CAS  Google Scholar 

  • Wakabayashi H, Takase M, Tomita M (2003) Lactoferricin derived from milk protein lactoferrin. Curr Pharm Design 9(16):1277–1287. doi:10.2174/1381612033454829

    Article  CAS  Google Scholar 

  • Wang GS, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937. doi:10.1093/nar/gkn823

    Article  CAS  Google Scholar 

  • Waterhouse A, Procter J, Martin D, Clamp M, Barton G (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2004) The peptaibol database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res 32:D593–D594. doi:10.1093/nar/gkh077

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Fonds québécois de la recherche sur la nature et les technologies (FQRNT). JT was receipt of a Ph.D. fellowship from FQRNT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riadh Hammami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 61 kb)

About this article

Cite this article

Théolier, J., Fliss, I., Jean, J. et al. MilkAMP: a comprehensive database of antimicrobial peptides of dairy origin. Dairy Sci. & Technol. 94, 181–193 (2014). https://doi.org/10.1007/s13594-013-0153-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13594-013-0153-2

Keywords

Navigation